Pregunta
upstudy study bank question image url

9. \( f(x)=0.2(5)^{-x} \)

Ask by Jimenez Simpson. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 0.2 \cdot (5)^{-x} \) is an exponential decay function with a y-intercept at \( (0, 0.2) \) and a horizontal asymptote at \( y = 0 \). As \( x \) increases, \( f(x) \) approaches 0, and as \( x \) decreases, \( f(x) \) increases without bound.

Solución

Sure, let's analyze the function you've provided: \[ f(x) = 0.2 \cdot (5)^{-x} \] ### 1. **Understanding the Function** The function \( f(x) = 0.2 \cdot (5)^{-x} \) is an **exponential function**. To better understand its behavior, let's rewrite it in a more familiar exponential form: \[ f(x) = 0.2 \cdot \left(\frac{1}{5}\right)^x \] This is because \( 5^{-x} = \left(\frac{1}{5}\right)^x \). ### 2. **Key Characteristics** #### a. **Base of the Exponential Function** - **Base (\( b \))**: \( \frac{1}{5} \) or \( 0.2 \) - Since \( 0 < b < 1 \), this indicates **exponential decay**. #### b. **Initial Value (y-intercept)** To find the y-intercept, set \( x = 0 \): \[ f(0) = 0.2 \cdot \left(\frac{1}{5}\right)^0 = 0.2 \cdot 1 = 0.2 \] So, the y-intercept is at \( (0, 0.2) \). #### c. **Horizontal Asymptote** As \( x \) approaches \( +\infty \), \( \left(\frac{1}{5}\right)^x \) approaches 0. Therefore, the horizontal asymptote is: \[ y = 0 \] #### d. **Behavior of the Function** - **As \( x \) increases (\( x \to +\infty \))**: \[ f(x) \to 0 \] - **As \( x \) decreases (\( x \to -\infty \))**: \[ f(x) \to \infty \] This means the function decreases towards the horizontal asymptote as \( x \) increases and increases without bound as \( x \) decreases. #### e. **Domain and Range** - **Domain**: All real numbers (\( -\infty, +\infty \)) - **Range**: All positive real numbers (\( 0, +\infty \)) ### 3. **Graph of the Function** Here's a qualitative description of the graph: - **Y-intercept** at \( (0, 0.2) \). - The graph approaches the horizontal asymptote \( y = 0 \) as \( x \) increases. - The graph rises steeply as \( x \) becomes negative. - It is continuously decreasing throughout its domain. **Graph Sketch:** ``` y | | | | * | * | * | * | * |* |-------------------------- x ``` *(Note: The asterisks (*) represent points on the graph approaching the y-axis as \( x \) decreases and approaching the horizontal asymptote \( y = 0 \) as \( x \) increases.)* ### 4. **Additional Analysis** #### a. **Inverse Function** To find the inverse of \( f(x) \), solve for \( x \): \[ y = 0.2 \cdot \left(\frac{1}{5}\right)^x \] First, divide both sides by 0.2: \[ \frac{y}{0.2} = \left(\frac{1}{5}\right)^x \] Take the natural logarithm of both sides: \[ \ln\left(\frac{y}{0.2}\right) = x \cdot \ln\left(\frac{1}{5}\right) \] Solve for \( x \): \[ x = \frac{\ln\left(\frac{y}{0.2}\right)}{\ln\left(\frac{1}{5}\right)} \] So, the inverse function is: \[ f^{-1}(y) = \frac{\ln\left(\frac{y}{0.2}\right)}{\ln\left(\frac{1}{5}\right)} \] #### b. **Applications** Exponential decay functions like this one are commonly used to model: - **Radioactive decay** - **Depreciation of assets** - **Cooling of objects** Understanding the parameters helps in interpreting real-world scenarios where quantities decrease exponentially over time. ### 5. **Summary** - **Function Type**: Exponential decay - **Base**: \( \frac{1}{5} \) (since it's between 0 and 1) - **Y-intercept**: \( 0.2 \) - **Horizontal Asymptote**: \( y = 0 \) - **Domain**: All real numbers - **Range**: Positive real numbers If you have a specific question or need further analysis on this function, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the function \( f(x)=0.2(5)^{-x} \) is an example of an exponential decay function? This means that as \( x \) increases, the value of \( f(x) \) gets smaller. The base, in this case, is \( 5 \), and because it's raised to the negative power of \( x \), it causes the function to decrease exponentially, making it useful in modeling phenomena like radioactive decay or depreciation of assets. For a real-world application, consider population decline in an area due to migration or other factors. If you were to model the population \( f(x) \) over time using this function, you'd see that as time progresses (as \( x \) increases), the population represented by \( f(x) \) would diminish rapidly, illustrating how quickly certain populations can decrease under various circumstances.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad