Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 39 and standard deviation 11 . What is the probability that \( X \) is greater than 17 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Mcdonald Luna. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is greater than 17 is **0.975**.

Solución

To determine the probability that \( X \) is greater than 17, where \( X \) is normally distributed with a mean (\( \mu \)) of 39 and a standard deviation (\( \sigma \)) of 11, we can use the \( 0.68-0.95-0.997 \) empirical rule. 1. **Calculate the Z-score:** \[ Z = \frac{X - \mu}{\sigma} = \frac{17 - 39}{11} = \frac{-22}{11} = -2 \] 2. **Interpret the Z-score using the empirical rule:** - The empirical rule states that approximately 95% of the data lies within \( \mu \pm 2\sigma \). - Therefore, \( P(\mu - 2\sigma \leq X \leq \mu + 2\sigma) \approx 0.95 \). 3. **Determine the probability \( P(X > 17) \):** - \( \mu - 2\sigma = 39 - 2 \times 11 = 17 \). - The probability that \( X \) is less than 17 is approximately \( 2.5\% \) (since 5% is split equally in the two tails of the distribution). - Hence, the probability that \( X \) is greater than 17 is: \[ P(X > 17) = 1 - P(X < 17) = 1 - 0.025 = 0.975 \] **Final Answer:** The probability that \( X \) is greater than 17 is **0.975**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that \( X \) is greater than 17, we first need to standardize the value using the Z-score formula: \[ Z = \frac{(X - \mu)}{\sigma} \] where \( \mu \) (the mean) is 39 and \( \sigma \) (the standard deviation) is 11. Plugging in the values for \( X = 17 \): \[ Z = \frac{(17 - 39)}{11} = \frac{-22}{11} = -2 \] Using the \( 0.68-0.95-0.997 \) rule, we know that about 95% of the data falls within 2 standard deviations from the mean. Thus, the area to the left of \( Z = -2 \) is approximately 0.025 (since we are looking at the lower tail). Therefore, the area to the right (which represents \( P(X > 17) \)) is: \[ P(X > 17) = 1 - P(X \leq 17) \approx 1 - 0.025 = 0.975 \] Thus, the probability that \( X \) is greater than 17 is approximately: \[ \boxed{0.975} \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad