Pregunta
upstudy study bank question image url

The graph of the rational function \( f(x)=\frac{x-2}{x^{2}+4 x-5} \) will have a vertical asymptote at a.) \( x=1 \) and \( x=-5 \) b.) \( x=1 \) and \( x=2 \) c.) \( x=-5 \) and \( x=2 \) d.) \( x=-5, x=1 \), and \( x=2 \)

Ask by Peterson Fuentes. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph has vertical asymptotes at \( x=1 \) and \( x=-5 \).

Solución

To determine the vertical asymptotes of the rational function \( f(x) = \frac{x-2}{x^{2} + 4x - 5} \), we need to identify the values of \( x \) that make the denominator equal to zero, provided that these values do not also make the numerator zero (which would indicate a hole instead of an asymptote). 1. **Factor the Denominator:** The denominator is \( x^2 + 4x - 5 \). To factor it, we look for two numbers that multiply to \(-5\) and add to \(4\). \[ x^2 + 4x - 5 = (x - 1)(x + 5) \] 2. **Find the Zeros of the Denominator:** Setting each factor equal to zero gives: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \] 3. **Check the Numerator:** The numerator is \( x - 2 \). For \( x = 1 \) and \( x = -5 \): \[ f(1) = \frac{1 - 2}{(1)^2 + 4(1) - 5} = \frac{-1}{0} \quad (\text{Undefined, vertical asymptote}) \] \[ f(-5) = \frac{-5 - 2}{(-5)^2 + 4(-5) - 5} = \frac{-7}{0} \quad (\text{Undefined, vertical asymptote}) \] Neither \( x = 1 \) nor \( x = -5 \) makes the numerator zero, so both points are indeed vertical asymptotes. **Final Answer:** **a.) \( x=1 \) and \( x=-5 \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the vertical asymptotes of the function \( f(x)=\frac{x-2}{x^{2}+4x-5} \), we need to find the values of \( x \) that make the denominator equal to zero, as these are where the function can become undefined. First, we need to factor the quadratic in the denominator: \( x^2 + 4x - 5 = (x + 5)(x - 1) \). Setting \( (x + 5)(x - 1) = 0 \) gives us the points \( x = -5 \) and \( x = 1 \). Thus, the function has vertical asymptotes at \( x = -5 \) and \( x = 1 \). So, the correct answer is: a.) \( x=1 \) and \( x=-5 \) Historical Background: Rational functions have been a fundamental part of mathematical studies since the early days of algebra, dating back to ancient civilizations. These functions often arise in real-world scenarios, such as in physics when dealing with rates and involving proportions that vary inversely. They play a critical role in calculus, particularly when discussing limits and asymptotic behaviors. Real-World Application: Rational functions present in various fields, such as economics and physics. For instance, in economics, the function can model supply and demand relationships, revealing how quantities change based on price fluctuations. Meanwhile, in physics, rational functions might be used to describe material properties under stress or fluid dynamics, helping engineers and scientists predict system behavior in design and analysis.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad