Show that: \( \begin{array}{ll}\text { (a) } 5 \cdot 2^{x}-2^{x+2}=2^{x} & \text { (b) } 9^{x}+3^{2 x+1}=4.3^{2 x} \\ \text { (c) } 2^{2 x-1}+4^{x+1}=2^{2 x}\left(\frac{9}{2}\right) & \text { (d) } 2^{x+3}-2^{x+2}=2^{x+2} \\ \text { (e) } 2.10^{x}-5^{x+1} \cdot 2^{x}=-3 \cdot 10^{x} & \text { (f) } 4.3^{1-x}+3^{2-x}=\frac{21}{3^{x}} \\ \text { Simplify the following: } & \\ 10^{x} \cdot 25^{x+1} & \text { (b) } 6^{n+2} \times 10^{n-2}\end{array} \) (c) \( \frac{6^{x} \cdot 9^{x+1} \cdot 2}{} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To tackle these equations, you'll often want to express everything using the same base to simplify each term effectively. For part (a), start by rewriting \(2^{x+2}\) as \(4 \cdot 2^{x}\) and you will quickly notice how like terms can be combined. This same principle extends to the other equations, where recognizing the various expressions as powers of 3, 2, or other base numbers can streamline your calculations. In part (c)'s simplification, remember that \(4^{x+1}\) is equal to \(4 \cdot 4^x = 4 \cdot (2^2)^x = 4 \cdot 2^{2x} = 2^{2x + 2}\). With such transformations, you can balance out both sides of the equation and eventually factor the equation down to a simpler form. This approach will yield clearer insights into how the terms relate to each other, making it easier to derive the desired result.