e) \( \frac{x^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \frac{x^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} \), let's first look at the denominator \( 2^{x+1}-2^{x+2} \). This can be factored out: \[ 2^{x+1} - 2^{x+2} = 2^{x+1}(1 - 2) = -2^{x+1}. \] Now, substituting this back into the fraction gives us: \[ \frac{x^{x+2} - 2^{x+3}}{-2^{x+1}} = -\frac{x^{x+2} - 2^{x+3}}{2^{x+1}}. \] Next, we rewrite \( 2^{x+3} \) in terms of \( 2^{x+1} \): \[ 2^{x+3} = 2^{x+1} \cdot 2^2 = 4 \cdot 2^{x+1}. \] Thus, the numerator becomes: \[ x^{x+2} - 2^{x+3} = x^{x+2} - 4 \cdot 2^{x+1}. \] So we can now express the entire expression as: \[ -\frac{x^{x+2} - 4 \cdot 2^{x+1}}{2^{x+1}}. \] This simplifies further to: \[ -\frac{x^{x+2}}{2^{x+1}} + 4. \] Thus, the simplified form of the given expression is: \[ 4 - \frac{x^{x+2}}{2^{x+1}}. \]