Pregunta
upstudy study bank question image url

1) In an experiment, the probability that event \( A \) occurs is \( \frac{2}{9} \), the probability that event \( B \) occurs is \( \frac{2}{7} \), and the probability that event \( A \) occurs given that event \( B \) occurs is \( \frac{2}{9} \). 4) Are \( A \) and \( B \) independent events? 4) yes

Ask by Bates Fernandez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Events \( A \) and \( B \) are independent.

Solución

Yes, events \( A \) and \( B \) are **independent**. ### Explanation: Two events \( A \) and \( B \) are independent if and only if the occurrence of one event does not affect the probability of the other. Mathematically, this is expressed as: \[ P(A \mid B) = P(A) \] Let's verify this with the given probabilities: - **Given:** - \( P(A) = \frac{2}{9} \) - \( P(B) = \frac{2}{7} \) - \( P(A \mid B) = \frac{2}{9} \) - **Check for Independence:** Compare \( P(A \mid B) \) with \( P(A) \): \[ P(A \mid B) = \frac{2}{9} = P(A) \] Since \( P(A \mid B) = P(A) \), this confirms that the occurrence of event \( B \) does not affect the probability of event \( A \). Therefore, events \( A \) and \( B \) are independent. - **Alternative Verification:** Another way to confirm independence is by checking if: \[ P(A \cap B) = P(A) \times P(B) \] Calculate \( P(A \cap B) \) using the conditional probability: \[ P(A \cap B) = P(A \mid B) \times P(B) = \frac{2}{9} \times \frac{2}{7} = \frac{4}{63} \] Now, calculate \( P(A) \times P(B) \): \[ P(A) \times P(B) = \frac{2}{9} \times \frac{2}{7} = \frac{4}{63} \] Since both calculations yield \( \frac{4}{63} \), this further confirms that \( A \) and \( B \) are independent events. ### Conclusion: Your answer is correct. Events \( A \) and \( B \) are independent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the independence of events \( A \) and \( B \), we can use the formula for independent events: \( P(A|B) = P(A) \). Here, \( P(A|B) \) is given as \( \frac{2}{9} \), and \( P(A) \) is also \( \frac{2}{9} \). Since these two probabilities are equal, it confirms that events \( A \) and \( B \) are indeed independent! Independence is a key concept in probability; it means that the occurrence of one event does not affect the occurrence of the other. This principle is widely applied in various fields like statistics, insurance, and games of chance. So, knowing you have independent events can help you easily calculate probabilities without worrying about their interactions!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad