Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 48 and standard deviation 23 . What is the probability that \( X \) is between 2 and 71 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Howell Floyd. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 2 and 71 is approximately 0.815.

Solución

To determine the probability that \( X \) is between 2 and 71 using the \( 0.68-0.95-0.997 \) empirical rule, follow these steps: 1. **Identify the Mean and Standard Deviation:** - Mean (\( \mu \)) = 48 - Standard Deviation (\( \sigma \)) = 23 2. **Calculate the Z-scores for 2 and 71:** \[ z_1 = \frac{2 - 48}{23} = \frac{-46}{23} = -2 \] \[ z_2 = \frac{71 - 48}{23} = \frac{23}{23} = 1 \] 3. **Use the Empirical Rule:** - The empirical rule states: - Approximately 68% of data lies within \( \pm1\sigma \). - Approximately 95% within \( \pm2\sigma \). - Approximately 99.7% within \( \pm3\sigma \). - However, we're interested in \( P(-2 \leq Z \leq 1) \), which doesn't align perfectly with the standard intervals provided by the empirical rule. To approximate: - The interval \( -2\sigma \) to \( +2\sigma \) covers about 95%. - The interval \( -2\sigma \) to \( +1\sigma \) covers roughly 81.5%. 4. **Final Probability:** \[ P(2 \leq X \leq 71) \approx 0.815 \] **Rounded to the nearest thousandth, the probability is 0.815.** **Answer:** The probability is approximately 0.815

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that \( X \) is between 2 and 71 in a normal distribution with mean \( \mu = 48 \) and standard deviation \( \sigma = 23 \), we can first standardize the values using the z-score formula: \[ z = \frac{(X - \mu)}{\sigma} \] For \( X = 2 \): \[ z_1 = \frac{(2 - 48)}{23} \approx -2 \] For \( X = 71 \): \[ z_2 = \frac{(71 - 48)}{23} \approx 1 \] Now we refer to the empirical rule: Approximately 68% of values lie within 1 standard deviation, 95% within 2 standard deviations, and 99.7% within 3 standard deviations of the mean. Since \( z_1 \) corresponds to roughly the -2 standard deviation mark and \( z_2 \) to the 1 standard deviation mark, the probability that \( X \) falls between these two z-scores can be calculated by determining the area under the normal curve from \( z = -2 \) to \( z = 1 \). This area represents: 1. Approximated by the empirical rule: About 95% of values lie within 2 standard deviations (\( -2 \) to \( 2 \)). 2. Since \( -2 \) to \( 0 \) is about 47.5% and \( 0 \) to \( 1 \) is about 34%, we're adding those portions: - From \( -2 \) to \( 0 \): 47.5% - From \( 0 \) to \( 1 \): 34% Adding these portions gives us: \[ P(2 < X < 71) \approx 47.5\% + 34\% = 81.5\% \] So as a decimal rounded to the nearest thousandth, the probability that \( X \) is between 2 and 71 is: \[ \text{Probability} \approx 0.815 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad