Pregunta
Use the rules of exponents to simplify the expression. \( \left(3 u^{2}\right)^{2}\left(2 u^{3}\right)^{3} \) \( \left(3 u^{2}\right)^{2}\left(2 u^{3}\right)^{3}=\square \)
Ask by Coleman Gibson. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(72u^{13}\)
Solución
Calculate or simplify the expression \( (3u^2)^2(2u^3)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3u^{2}\right)^{2}\left(2u^{3}\right)^{3}\)
- step1: Rewrite the expression:
\(9u^{4}\times 8u^{9}\)
- step2: Multiply the numbers:
\(72u^{4}\times u^{9}\)
- step3: Multiply the terms:
\(72u^{13}\)
The simplified expression is \(72u^{13}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
Let's simplify the expression step by step! First, when you raise a power to a power, you multiply the exponents. So, for \( \left(3 u^{2}\right)^{2} \), you get \( 3^{2} u^{2 \cdot 2} = 9 u^{4} \). For \( \left(2 u^{3}\right)^{3} \), you get \( 2^{3} u^{3 \cdot 3} = 8 u^{9} \). Now, we can combine these results: \( (9 u^{4})(8 u^{9}) = 9 \cdot 8 \cdot u^{4 + 9} = 72 u^{13} \). So, \( \left(3 u^{2}\right)^{2}\left(2 u^{3}\right)^{3} = 72 u^{13} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium