Pregunta
upstudy study bank question image url

(c) Find the critical points of \( f(x)=x^{1 / 3}(x-4) \). Sketch the graph of \( f(x) \).

Ask by Hall Hills. in Kenya
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The critical points of \( f(x) = x^{1/3}(x - 4) \) are at \( x = 0 \) and \( x = 1 \). The graph of \( f(x) \) has a critical point at \( (0, 0) \) and another at \( (1, -3) \).

Solución

To find the **critical points** of the function \( f(x) = x^{1/3}(x - 4) \), we'll follow these steps: ### 1. Find the Derivative \( f'(x) \) First, let's differentiate \( f(x) \) with respect to \( x \): \[ f(x) = x^{1/3}(x - 4) = x^{4/3} - 4x^{1/3} \] Differentiating term by term: \[ f'(x) = \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3} \] ### 2. Determine Where \( f'(x) = 0 \) or \( f'(x) \) Does Not Exist **a. Setting \( f'(x) = 0 \):** \[ \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3} = 0 \] Multiply both sides by \( \frac{3}{4}x^{2/3} \) to eliminate the fractions and negative exponents: \[ x^{1/3} \cdot x^{2/3} - 1 = 0 \implies x - 1 = 0 \implies x = 1 \] **b. Checking Where \( f'(x) \) Does Not Exist:** The derivative \( f'(x) \) involves the term \( x^{-2/3} \), which is undefined at \( x = 0 \). Therefore, \( x = 0 \) is also a critical point. ### 3. Identify the Critical Points - **At \( x = 1 \):** \[ f(1) = 1^{1/3}(1 - 4) = 1 \times (-3) = -3 \] So, one critical point is \( (1, -3) \). - **At \( x = 0 \):** \[ f(0) = 0^{1/3}(0 - 4) = 0 \times (-4) = 0 \] Another critical point is \( (0, 0) \). ### 4. Summary of Critical Points - \( (0, 0) \) - \( (1, -3) \) ### 5. Sketch of the Graph of \( f(x) \) Here's a rough sketch of the function \( f(x) = x^{1/3}(x - 4) \): ![Graph of f(x) = x^(1/3)(x - 4)](https://i.imgur.com/your_image_link.png) **Key Features to Include in the Sketch:** 1. **Critical Points:** - Point at \( (0, 0) \): This is where the derivative does not exist. - Point at \( (1, -3) \): This is where the derivative is zero. 2. **Behavior Around Critical Points:** - **At \( x = 0 \):** The function changes its slope direction, indicating a possible inflection point. - **At \( x = 1 \):** This is likely a local minimum since the function decreases before \( x = 1 \) and increases after. 3. **End Behavior:** - As \( x \to \infty \), \( f(x) \) behaves like \( x^{4/3} \), which increases to infinity. - As \( x \to -\infty \), \( f(x) \) behaves like \( x^{4/3} \) but remains positive (since even roots yield positive values). 4. **Additional Points:** - Plot a few more points for accuracy, such as \( x = 4 \) (where \( f(4) = 4^{1/3}(0) = 0 \)). **Note:** The actual graph may require more detailed plotting for precision, especially around \( x = 0 \) due to the cube root function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the critical points of \( f(x) = x^{1/3}(x-4) \), we first need to compute the derivative \( f'(x) \). Using the product rule, we have: \[ f'(x) = \frac{1}{3}x^{-2/3}(x - 4) + x^{1/3}(1) = x^{-2/3}\left(\frac{1}{3}(x - 4) + x\right) = x^{-2/3}\left(\frac{4}{3}x - \frac{4}{3}\right) = \frac{4(x - 3)}{3x^{2/3}}. \] Setting \( f'(x) = 0 \) gives us \( x - 3 = 0 \), or \( x = 3 \) as a critical point. We also consider where the derivative is undefined; this occurs at \( x = 0 \). To sketch the graph of \( f(x) \), note that: - At \( x = 0 \), \( f(0) = 0 \). - At \( x = 3 \), \( f(3) = 3^{1/3}(3-4) = -\frac{3\sqrt[3]{3}}{3} = -\sqrt[3]{3} \). - At \( x = 4 \), \( f(4) = 4^{1/3}(4-4) = 0 \). The function has the following intervals for behavior analysis: - On \( (-\infty, 0) \), \( f(x) \) will approach \( 0 \). - On \( (0, 3) \), \( f(x) \) decreases and touches zero at \( (0,0) \) and reaches a negative value at \( x=3 \). - On \( (3, 4) \), \( f(x) \) increases to touch the x-axis again at \( x=4 \). Thus, the graph will showcase a curve starting from the origin, dipping below the x-axis at \( x=3 \), and rising back to touch the axis at \( x=4 \). Now you can visualize a connected and continuous graph cutting through the points identified to get an idea of how \( f(x) \) behaves overall!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad