Describe the right end behavior of the function \( f(x)=\frac{42 x^{7}+3 x^{2}}{18 x^{6}-3 x} \) by finding \( \lim _{x \rightarrow \infty} f(x) \) \( \lim _{x \rightarrow \infty} f(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To analyze the right end behavior of the function \( f(x)=\frac{42 x^{7}+3 x^{2}}{18 x^{6}-3 x} \), we start by taking the limit as \( x \) approaches infinity. 1. Identify the highest degree terms in the numerator and the denominator: - The highest degree term in the numerator is \( 42x^7 \). - The highest degree term in the denominator is \( 18x^6 \). 2. Now, rewrite the function by dividing the numerator and the denominator by \( x^7 \) (the highest degree of the numerator): \[ f(x) = \frac{42 + \frac{3}{x^5}}{\frac{18}{x} - \frac{3}{x^6}} \] 3. As \( x \) approaches infinity, the terms \( \frac{3}{x^5} \), \( \frac{18}{x} \), and \( \frac{3}{x^6} \) approach 0: \[ \lim_{x \rightarrow \infty} f(x) = \frac{42 + 0}{0 - 0} = \frac{42}{0} \] Thus, the limit approaches infinity. Therefore, \[ \lim_{x \rightarrow \infty} f(x) = \infty. \]