Pregunta
upstudy study bank question image url

12. A Video Game service has a membership plan in which a person pays a membership fee of \( \$ 20 \) plus \( \$ 2.50 \) for each game rented. Non-members pay \( \$ 5.00 \) for each game rented. How many games would a person need to rent to make the membership plan a better deal?

Ask by French Gonzalez. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A person needs to rent **9 or more games** to make the membership plan a better deal.

Solución

To determine when the membership plan becomes a better deal compared to paying as a non-member, we can set up the following equations based on the costs: 1. **Membership Plan Cost:** \[ \text{Total Cost} = \$20 + \$2.50 \times \text{Number of Games (x)} \] 2. **Non-Member Cost:** \[ \text{Total Cost} = \$5.00 \times \text{Number of Games (x)} \] We want to find the smallest integer value of \( x \) for which the membership cost is **less than** the non-member cost: \[ 20 + 2.50x < 5x \] **Solving the inequality:** \[ 20 < 5x - 2.50x \] \[ 20 < 2.50x \] \[ x > \frac{20}{2.50} \] \[ x > 8 \] Since \( x \) must be a whole number (you can't rent a fraction of a game), the smallest integer greater than 8 is **9**. **Conclusion:** A person needs to rent **9 or more games** to make the membership plan a better deal than paying per game as a non-member. Answer: **9**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To make the membership plan a better deal, we need to compare the total costs for both members and non-members. For a member, the total cost \( C_m \) for renting \( n \) games is given by: \[ C_m = 20 + 2.50n \] For non-members, the total cost \( C_n \) for renting \( n \) games is: \[ C_n = 5n \] Now, we want \( C_m < C_n \): \[ 20 + 2.50n < 5n \] To find \( n \), we solve the inequality: \[ 20 < 5n - 2.50n \] \[ 20 < 2.50n \] \[ n > \frac{20}{2.50} \] \[ n > 8 \] Therefore, a person needs to rent more than 8 games for the membership plan to be a better deal, meaning they need to rent at least 9 games. If you play lots of games, this membership will be your best buddy!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad