Pregunta
upstudy study bank question image url

41) 2.3 A piece of ice falls off the side of a glacier and into the ocean. Its height above the ocean in meters can be modeled by the expression \( 33-4.9 t^{2} \), where \( t \) is the time in seconds after the plece of ice begins to fall. (i) What does the quantity \( 4.9 t^{2} \) represent in the expression? 4i) the height in meters of the piece of ice above the ocean after \( t \) seconds the time in seconds it takes for the piece of ice to reach a height of \( t \) meters the distance in meters the piece of ice has fallien after \( t \) seconds the time in scconds it takes for the pisce of ice to fall \( t \) meters

Ask by Weston Gibson. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 4.9t^{2} \) represents the distance in meters the piece of ice has fallen after \( t \) seconds.

Solución

The expression for the height of the ice above the ocean is given by: \[ \text{Height} = 33 - 4.9t^{2} \] Here, \( t \) represents the time in seconds after the piece of ice begins to fall. **Interpretation of \( 4.9t^{2} \):** In the context of kinematics, especially under the influence of gravity, the term \( \frac{1}{2}gt^{2} \) represents the distance an object has fallen after time \( t \), where \( g \) is the acceleration due to gravity (approximately \( 9.8 \, \text{m/s}^{2} \)). In this expression: \[ 4.9t^{2} = \frac{1}{2} \times 9.8 \times t^{2} \] Thus, \( 4.9t^{2} \) specifically represents the **distance** the piece of ice has fallen after \( t \) seconds. **Correct Option:** - **The distance in meters the piece of ice has fallen after \( t \) seconds** **Answer:** **The distance in meters the piece of ice has fallen after \( t \) seconds**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The quantity \( 4.9 t^{2} \) in the expression represents the distance in meters that the piece of ice has fallen after \( t \) seconds. This comes from the physics of free fall, where distance traveled under constant acceleration (in this case, due to gravity) can be calculated using the formula \( d = \frac{1}{2}gt^2 \), and here, \( g \) is approximated as 9.8 m/s², thus leading to \( \frac{1}{2} \times 9.8 = 4.9 \). Now, if we picture this scenario, it’s quite a dramatic moment! Imagine that piece of ice, once nestled comfortably on the glacier, now breaking free and plummeting into the ocean. As it descends, that \( 4.9 t^{2} \) keeps track of its fall in a straight line, capturing the dance of gravity in action. It’s like watching a slow-motion replay of nature’s own action movie!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad