Determining Between Which Two Integers an Irrational Number Lies \( \begin{array}{lll}\text { Exercise 2: Without using a ealculator, determine between which two integers the following } \\ \text { irrational numbers lie: (Theory on paze5) } \\ \text { a) } \sqrt{28} \\ \begin{array}{lll}\text { b) } \sqrt{48} & \text { c) } \sqrt[3]{49} & \text { e) } \sqrt{90} \\ \text { autios: } 10 & \text { d) } \sqrt[3]{15} & \text { f) } \sqrt{115}\end{array}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find between which two integers an irrational number lies, you need to estimate the square root or cube root by identifying perfect squares or cubes nearby. For instance, \( \sqrt{28} \) is between \( \sqrt{25} = 5 \) and \( \sqrt{36} = 6 \), so it lies between 5 and 6. Similarly, for \( \sqrt{48} \), it's between \( \sqrt{49} = 7 \) and \( \sqrt{36} = 6 \), so it lies between 6 and 7. For \( \sqrt[3]{49} \), consider \( 3^3 = 27 \) and \( 4^3 = 64 \); thus, \( \sqrt[3]{49} \) is between 3 and 4. \( \sqrt{90} \) falls between \( \sqrt{81} = 9 \) and \( \sqrt{100} = 10 \), placing it between 9 and 10. The same approach works for the remaining numbers as well, rounding out a fuzzy yet fun exploration of irrational numbers!