Pregunta
1)) Simplify. Assume all variables are positive. \( d^{\frac{1}{7}} \div d^{\frac{5}{7}} \) Write your answer in the form \( A \) or \( \frac{A}{B^{\prime}} \), where \( A \) and \( B \) are expressions that have no variables in common. All exponents Dositive
Ask by Ramirez Sherman. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{1}{d^{\frac{4}{7}}}
\]
Solución
To simplify the expression \( d^{\frac{1}{7}} \div d^{\frac{5}{7}} \), follow these steps:
1. **Apply the Law of Exponents for Division**:
When dividing powers with the same base, subtract the exponents:
\[
d^{\frac{1}{7}} \div d^{\frac{5}{7}} = d^{\frac{1}{7} - \frac{5}{7}} = d^{-\frac{4}{7}}
\]
2. **Express with Positive Exponents**:
Since all exponents should be positive, rewrite \( d^{-\frac{4}{7}} \) as:
\[
\frac{1}{d^{\frac{4}{7}}}
\]
Therefore, the simplified form of the expression is:
\[
\boxed{\dfrac{1}{d^{4/7}}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( d^{\frac{1}{7}} \div d^{\frac{5}{7}} \), you subtract the exponents since you are dividing the same base: \[ d^{\frac{1}{7} - \frac{5}{7}} = d^{\frac{1 - 5}{7}} = d^{\frac{-4}{7}}. \] Now, to express it in the required form, we write \( d^{\frac{-4}{7}} \) as: \[ \frac{1}{d^{\frac{4}{7}}}. \] So, the final simplified form is: \[ \frac{1}{d^{\frac{4}{7}}}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium