Question Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of \( f(x)=3 x+2 \) below by the \( x \)-axis over the interval \( [2,3] \) about the line \( y=-2 \). Enter an exact value in terms of \( \pi \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the volume of the solid formed by revolving the region bounded by \( f(x) = 3x + 2 \) and the \( x \)-axis over the interval \([2, 3]\) about the line \( y = -2 \), we can use the washer method. The function intersects the x-axis when \( f(x) = 0 \): \[ 3x + 2 = 0 \implies x = -\frac{2}{3} \] However, for our calculation within the interval \([2, 3]\), we don't reach the x-axis. The outer radius \( R(x) \) and inner radius \( r(x) \) are given by the distance from the line \( y = -2 \): - Outer radius \( R(x) = (3x + 2) - (-2) = 3x + 4 \) - Inner radius \( r(x) = 0 - (-2) = 2 \) The volume \( V \) is calculated using the formula for washers: \[ V = \pi \int_{a}^{b} \left( R(x)^2 - r(x)^2 \right) \, dx \] Substituting our limits \( a=2 \), \( b=3 \): \[ V = \pi \int_{2}^{3} \left( (3x + 4)^2 - (2)^2 \right) \, dx \] To solve this, we first expand the equation: \[ (3x + 4)^2 = 9x^2 + 24x + 16 \] \[ (2)^2 = 4 \] So the integral simplifies to: \[ V = \pi \int_{2}^{3} \left( 9x^2 + 24x + 16 - 4 \right) \, dx = \pi \int_{2}^{3} (9x^2 + 24x + 12) \, dx \] Now we compute the integral: \[ \int (9x^2 + 24x + 12) \, dx = 3x^3 + 12x^2 + 12x \] Evaluating it from 2 to 3: \[ \left[ 3(3)^3 + 12(3)^2 + 12(3) \right] - \left[ 3(2)^3 + 12(2)^2 + 12(2) \right] \] Calculating separately: For \( x = 3 \): \[ 3(27) + 12(9) + 36 = 81 + 108 + 36 = 225 \] For \( x = 2 \): \[ 3(8) + 12(4) + 24 = 24 + 48 + 24 = 96 \] Thus, \[ V = \pi \left( 225 - 96 \right) = 129\pi \] Therefore, the volume of the solid of revolution is: \[ \boxed{129\pi} \]