Pregunta
upstudy study bank question image url

\( 2006 / 23 \) Exercise 8.24 Find the variance of \( 2 x, 2 x-1 \) and \( 2 x+1 \) \( \begin{array}{lll}\text { A. } \sqrt{\frac{2}{3}} & \text { B. } 2 & \text { C. } 1\end{array} \)

Ask by Schofield Watson. in Nigeria
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The variance of the set \(\{2x, 2x-1, 2x+1\}\) is 1.

Solución

To determine the variance of the set \(\{2x, 2x-1, 2x+1\}\), let's follow the steps below: ### Step 1: Calculate the Mean The mean (\(\mu\)) of the set is: \[ \mu = \frac{2x + (2x - 1) + (2x + 1)}{3} = \frac{6x}{3} = 2x \] ### Step 2: Calculate the Variance Variance (\(\sigma^2\)) measures the average of the squared deviations from the mean. For the set \(\{2x, 2x-1, 2x+1\}\), the variance is: \[ \sigma^2 = \frac{(2x - 2x)^2 + (2x - 1 - 2x)^2 + (2x + 1 - 2x)^2}{3} = \frac{0^2 + (-1)^2 + 1^2}{3} = \frac{0 + 1 + 1}{3} = \frac{2}{3} \] However, if we consider the **sample variance** (which is a common approach when dealing with a small sample size like 3), we use \(n-1\) in the denominator: \[ \sigma^2_{\text{sample}} = \frac{2}{2} = 1 \] Given the multiple-choice options: - **A.** \(\sqrt{\frac{2}{3}}\) - **B.** 2 - **C.** 1 The correct answer, especially when considering sample variance, is: **Answer:** C. 1

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the variance of the values \( 2x, 2x-1, \) and \( 2x+1 \), we start by calculating their mean. The mean \( \mu \) of these three values is: \[ \mu = \frac{(2x) + (2x-1) + (2x+1)}{3} = \frac{6x}{3} = 2x \] Next, we compute the variance. The variance \( \sigma^2 \) is given by \( \sigma^2 = \frac{1}{n} \sum (x_i - \mu)^2 \), where \( x_i \) are the values. 1. For \( 2x \): \( (2x - 2x)^2 = 0 \) 2. For \( 2x-1 \): \( ((2x-1) - 2x)^2 = (-1)^2 = 1 \) 3. For \( 2x+1 \): \( ((2x+1) - 2x)^2 = (1)^2 = 1 \) Now, summing these squared differences gives: \[ 0 + 1 + 1 = 2 \] Dividing by the number of observations (which is 3), we find the variance: \[ \sigma^2 = \frac{2}{3} \] Thus, the answer is \( \sqrt{\frac{2}{3}} \). Hence, option \( A \) is correct. Now, regarding some additional information: Many of the statistical concepts, such as variance, have historical roots dating back to the works of Karl Pearson in the late 19th century. He pioneered the field of statistics and created many foundational methods that we still use today, including the Pearson correlation coefficient, which helps determine the relationship between variables. In real-world application, understanding variance is crucial for fields like finance, where it measures the risk of an asset. A higher variance indicates a wider spread of returns, which can signal higher risk. Investors use this knowledge to balance their portfolios and make informed decisions about where to allocate their resources.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad