Pregunta
upstudy study bank question image url

Part 1 of 2 Two coins are tossed. You win \( \$ 5.00 \) if both coins are heads and \( \$ 6.00 \) if both coins are tails. You lose \( \$ 5.00 \) if the coins do not match. What is the 0 of 1 expected value of this game? Is this a fair game?

Ask by Olson Vargas. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expected value of the game is \$0.25, and since it's positive, the game is not fair; it favors the player.

Solución

To determine the expected value of the game and assess its fairness, let's break down the possible outcomes and their associated probabilities and payouts. ### **Possible Outcomes:** 1. **Both Heads (HH)**: - **Probability:** \( \frac{1}{4} \) - **Payout:** \( +\$5.00 \) 2. **Both Tails (TT)**: - **Probability:** \( \frac{1}{4} \) - **Payout:** \( +\$6.00 \) 3. **One Head and One Tail (HT or TH)**: - **Probability:** \( \frac{2}{4} = \frac{1}{2} \) - **Payout:** \( -\$5.00 \) ### **Calculating the Expected Value (EV):** The expected value is the sum of all possible outcomes, each weighted by its probability. \[ \begin{align*} EV &= \left(\frac{1}{4} \times \$5.00\right) + \left(\frac{1}{4} \times \$6.00\right) + \left(\frac{1}{2} \times -\$5.00\right) \\ &= \left(\$1.25\right) + \left(\$1.50\right) + \left(-\$2.50\right) \\ &= \$1.25 + \$1.50 - \$2.50 \\ &= \$0.25 \end{align*} \] ### **Is This a Fair Game?** A **fair game** is one where the expected value is **zero**, meaning neither the player nor the house has an advantage in the long run. - **Calculated EV:** \( +\$0.25 \) Since the expected value is **positive**, the player expects to **gain** an average of **\$0.25** per game. Therefore, **this game is not fair**; it slightly favors the player. ### **Summary:** - **Expected Value:** \( \$0.25 \) per game - **Fairness:** **No**, the game is not fair as it provides a positive expected gain to the player.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the expected value of this game, we first determine the possible outcomes when two coins are tossed. There are four equally likely outcomes: HH (both heads), HT (one head, one tail), TH (one tail, one head), and TT (both tails). - Winning \( \$ 5.00 \) for HH: Probability = \( \frac{1}{4} \) - Losing \( \$ 5.00 \) for HT and TH: Combined Probability = \( \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \) - Winning \( \$ 6.00 \) for TT: Probability = \( \frac{1}{4} \) Now, we calculate the expected value (EV) using the formula: \[ EV = (5 \times \frac{1}{4}) + (-5 \times \frac{1}{2}) + (6 \times \frac{1}{4}) \] Calculating each term gives: \[ EV = \frac{5}{4} + \left(-\frac{5}{2}\right) + \frac{6}{4} \] \[ EV = \frac{5}{4} - \frac{10}{4} + \frac{6}{4} \] \[ EV = \frac{1}{4} \] The expected value is \( \$ 0.25 \). Since the expected value is positive, this indicates that it is not a fair game, as on average, you would expect to make a profit over time. --- The game is a simple example of probability in action! If you analyze the probabilities closely, you’ll find that the rewards for HH and TT contribute favorably to the overall value, making this game a bit more enticing. Just keep in mind that luck plays its role—there's no guarantee you'll always win even with a positive expected value! And if you ever want to delve deeper into the fascinating realm of probability and expected values, consider exploring concepts like variance and standard deviation! These help you understand not just what to expect on average, but also how much those expectations can fluctuate.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad