Identify the asymptotes. \[ \begin{array}{l}s(x)=\frac{4 x^{2}-6}{x^{2}} \\ \text { Part: } \mathbf{0} / \mathbf{3} \\ \text { Part } 1 \text { of } 3 \\ \text { Equation(s) of vertical asymptote(s): }\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the vertical asymptotes of the function \( s(x) = \frac{4x^2 - 6}{x^2} \), we need to identify where the denominator equals zero, as vertical asymptotes occur at these points (assuming the same factor does not cancel with the numerator). The denominator \( x^2 = 0 \) gives us \( x = 0 \). Therefore, there is a vertical asymptote at \( x = 0 \). Now let's consider the horizontal asymptotes. Horizontal asymptotes are determined by the behavior of the function as \( x \) approaches \( \pm \infty \). As \( x \) goes to infinity (or negative infinity), the leading terms dominate the behavior of the function: \[ s(x) \approx \frac{4x^2}{x^2} = 4. \] Thus, the horizontal asymptote is \( y = 4 \). In summary, - The equation of the vertical asymptote is \( x = 0 \). - The equation of the horizontal asymptote is \( y = 4 \).