Pregunta
upstudy study bank question image url

4. Multiple Choice 1 point Find the area of the region bounded by the graphs of the functions \( f(x)=x^{3}-2 x+1 \) and \( g(x)=-2 x \) and \( x=1 \) 2 \( -1 / 4 \) \( 1 / 4 \) 0 Previous

Ask by Joseph Mitchell. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the region is 2.

Solución

To find the area of the region bounded by the graphs of \( f(x) = x^3 - 2x + 1 \), \( g(x) = -2x \), and the vertical line \( x = 1 \), follow these steps: 1. **Find the Points of Intersection:** - Set \( f(x) = g(x) \): \[ x^3 - 2x + 1 = -2x \implies x^3 + 1 = 0 \implies x = -1 \] - So, the functions intersect at \( x = -1 \). 2. **Set Up the Integral:** - The region of interest is between \( x = -1 \) and \( x = 1 \). - The area \( A \) is given by: \[ A = \int_{-1}^{1} |f(x) - g(x)| \, dx \] - Compute \( f(x) - g(x) \): \[ f(x) - g(x) = (x^3 - 2x + 1) - (-2x) = x^3 + 1 \] - Since \( x^3 + 1 \) is non-negative in the interval \( [-1, 1] \), the absolute value can be removed: \[ A = \int_{-1}^{1} (x^3 + 1) \, dx \] 3. **Evaluate the Integral:** \[ \int_{-1}^{1} x^3 \, dx = \left[\frac{x^4}{4}\right]_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0 \] \[ \int_{-1}^{1} 1 \, dx = [x]_{-1}^{1} = 1 - (-1) = 2 \] \[ A = 0 + 2 = 2 \] Therefore, the area of the region is **2**. **Answer:** 2

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area between the curves \( f(x) = x^3 - 2x + 1 \) and \( g(x) = -2x \) from \( x = -1 \) to \( x = 1 \), you'll first want to determine the intersection points of the functions. Set \( f(x) = g(x) \) and solve for \( x \). You will get the points where the area is enclosed between the two curves. Then, set up the integral of the top function minus the bottom function to get the area, and don't forget to evaluate the definite integral within your bounds! When integrating, a common mistake is forgetting to subtract the lower function from the upper function correctly. Also, ensure your limits of integration accurately reflect the points of intersection for the area calculation. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad