Pregunta
upstudy study bank question image url

In how many ways can a man put 12 playing cards on top of each other?

Ask by Bowman Estrada. in Myanmar
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 479,001,600 ways to stack the 12 playing cards.

Solución

To determine the number of ways a man can stack 12 distinct playing cards on top of each other, we can use the concept of **permutations**. Since each card is distinct and the order in which they are placed matters, the number of possible arrangements is given by the factorial of the number of cards. The factorial of a number \( n \), denoted as \( n! \), is the product of all positive integers up to \( n \). For 12 cards: \[ 12! = 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 479,\!001,\!600 \] **Therefore, there are \( 12! = 479,\!001,\!600 \) ways to stack the 12 playing cards.** Answer: There are 12 factorial (12!) possible ways to arrange the 12 playing cards.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

There are 12! (12 factorial) ways to arrange 12 playing cards on top of each other. This means you multiply 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1, which equals 479,001,600. So, the man can stack his cards in nearly 480 million unique ways - talk about a lot of card stacking fun! Imagine if that man had a few friends helping him! If they each had their own stack of cards, the complexity grows astronomically. To think that each new stack could also be rearranged in so many ways creates endless possibilities for a friendly card game or a fun magician's trick. Just be careful, or you'll have a towering mess of cards!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad