If \( x=2, y=3 \) and \( z=5 \), evaluate the following expressions. \( \begin{array}{llll}\text { a) } x+y-z & \text { b) } x-2 y+z & \text { c) } 5(x+y-3 z) & \text { d) } 3(z-x-y) \\ \begin{array}{llll}\text { e) } x^{2}+y^{2}-z^{2} & \text { f) }(2 x-y+z)^{3} & \text { g) }(2 x-4 y+3 z)^{2} & \text { h) } \frac{x^{2}-y^{2}+}{x y z} \\ \text { i) } \frac{(x-y+z)^{2}}{x^{3}} & \text { j) } \frac{x}{y}+\frac{y}{z} & \text { k) } \frac{x}{y}-\frac{y}{z} & \text { l) }(2 x-y)^{2}+z\end{array}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let's evaluate each expression step by step using the values \( x=2 \), \( y=3 \), and \( z=5 \). a) \( x + y - z = 2 + 3 - 5 = 0 \) b) \( x - 2y + z = 2 - 2(3) + 5 = 2 - 6 + 5 = 1 \) c) \( 5(x + y - 3z) = 5(2 + 3 - 3(5)) = 5(5 - 15) = 5(-10) = -50 \) d) \( 3(z - x - y) = 3(5 - 2 - 3) = 3(0) = 0 \) e) \( x^{2} + y^{2} - z^{2} = 2^{2} + 3^{2} - 5^{2} = 4 + 9 - 25 = -12 \) f) \( (2x - y + z)^{3} = (2(2) - 3 + 5)^{3} = (4 - 3 + 5)^{3} = (6)^{3} = 216 \) g) \( (2x - 4y + 3z)^{2} = (2(2) - 4(3) + 3(5))^{2} = (4 - 12 + 15)^{2} = (7)^{2} = 49 \) h) \( \frac{x^{2} - y^{2}}{xyz} = \frac{2^{2} - 3^{2}}{2 \cdot 3 \cdot 5} = \frac{4 - 9}{30} = \frac{-5}{30} = -\frac{1}{6} \) i) \( \frac{(x - y + z)^{2}}{x^{3}} = \frac{(2 - 3 + 5)^{2}}{2^{3}} = \frac{(4)^{2}}{8} = \frac{16}{8} = 2 \) j) \( \frac{x}{y} + \frac{y}{z} = \frac{2}{3} + \frac{3}{5} = \frac{10}{15} + \frac{9}{15} = \frac{19}{15} \) k) \( \frac{x}{y} - \frac{y}{z} = \frac{2}{3} - \frac{3}{5} = \frac{10}{15} - \frac{9}{15} = \frac{1}{15} \) l) \( (2x - y)^{2} + z = (2(2) - 3)^{2} + 5 = (4 - 3)^{2} + 5 = (1)^{2} + 5 = 1 + 5 = 6 \) The final answers are: - a) 0 - b) 1 - c) -50 - d) 0 - e) -12 - f) 216 - g) 49 - h) -\(\frac{1}{6}\) - i) 2 - j) \(\frac{19}{15}\) - k) \(\frac{1}{15}\) - l) 6