Express the set \( -4 x+30 \leq 2 x+12 \) using interval notation.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the inequality \( -4x + 30 \leq 2x + 12 \), we start by isolating \( x \). 1. First, move \( 2x \) to the left side: \[ -4x - 2x + 30 \leq 12 \] This simplifies to: \[ -6x + 30 \leq 12 \] 2. Next, subtract 30 from both sides: \[ -6x \leq 12 - 30 \] Simplifying that gives: \[ -6x \leq -18 \] 3. Now, divide both sides by -6. Remember to flip the inequality sign when dividing by a negative number: \[ x \geq 3 \] Now we express this solution in interval notation. The solution \( x \geq 3 \) translates to the interval: \[ [3, \infty) \]