Pregunta
upstudy study bank question image url

Find the volume of a right circular cone that has a height of 18.8 m and a base with a radius of 19.3 m . Round your answer to the nearest tenth of a cubic meter. Answer Attempt 1 out of 2

Ask by Rowe Cruz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the cone is approximately 7333.3 cubic meters.

Solución

To find the volume of a right circular cone, we can use the formula: \[ V = \frac{1}{3} \pi r^2 h \] where: - \( V \) is the volume of the cone, - \( r \) is the radius of the base of the cone, - \( h \) is the height of the cone. Given: - Height of the cone, \( h = 18.8 \) m, - Radius of the base of the cone, \( r = 19.3 \) m. Substitute the given values into the formula: \[ V = \frac{1}{3} \pi (19.3)^2 (18.8) \] Now, we can calculate the volume of the cone. Calculate the value by following steps: - step0: Calculate: \(\frac{1}{3}\pi \times 19.3^{2}\times 18.8\) - step1: Convert the expressions: \(\frac{1}{3}\pi \left(\frac{193}{10}\right)^{2}\times 18.8\) - step2: Multiply the terms: \(\frac{94}{15}\pi \left(\frac{193}{10}\right)^{2}\) - step3: Multiply: \(\frac{94\pi }{15}\left(\frac{193}{10}\right)^{2}\) - step4: Evaluate the power: \(\frac{94\pi }{15}\times \frac{193^{2}}{10^{2}}\) - step5: Rewrite the expression: \(\frac{2\times 47\pi }{15}\times \frac{193^{2}}{10^{2}}\) - step6: Rewrite the expression: \(\frac{2\times 47\pi }{15}\times \frac{193^{2}}{2^{2}\times 5^{2}}\) - step7: Reduce the numbers: \(\frac{47\pi }{15}\times \frac{193^{2}}{2\times 5^{2}}\) - step8: Multiply the fractions: \(\frac{47\pi \times 193^{2}}{15\times 50}\) - step9: Multiply: \(\frac{1750703\pi }{750}\) The volume of the right circular cone is approximately 7333.327578 cubic meters. Rounding to the nearest tenth of a cubic meter, the volume of the cone is approximately 7333.3 cubic meters.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of a right circular cone, you can use the formula: \[ V = \frac{1}{3} \pi r^2 h \] where \( r \) is the radius of the base, and \( h \) is the height of the cone. Plugging in the values, \[ V = \frac{1}{3} \pi (19.3)^2 (18.8) \] Calculating this gives: 1. \( 19.3^2 \approx 372.49 \) 2. \( V = \frac{1}{3} \pi (372.49)(18.8) \approx \frac{1}{3} \pi (7006.97) \approx 7331.679 \, \text{m}^3 \) So when rounding to the nearest tenth, the volume is approximately **7331.7 m³**. You can visualize that this cone is like a party hat! Just like how a fun, wide-brimmed hat can hold a lot of joy (and snacks!), this cone is holding a considerable volume of space. Also, if you're ever in a geometry jam, remember the importance of units! Mixing meters with cubic centimeters can lead to major head-scratchers – it’s like mixing apples with oranges! Always keep your dimensions consistent for clearer calculations.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad