Find \( f+g, f-g \), \( f \), and \( \frac{1}{g} \). Determine the domain for each function. \[ f(x)=\sqrt{x} ; g(x)=x-9 \] C. ille vomain oi \( 1+\mathrm{g} \) is \( \wp \). \( (f-g)(x)=\sqrt{x}-x+9 \) (Simplify your answer.) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( [0, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{\quad \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \) \( (\mathrm{fg})(\mathrm{x})=(\mathrm{x}-9) \sqrt{\mathrm{x}} \) (Simplify your answer.) What is the domain of fg ? A. The domain of fg is \( [1,2) \cup(2, \infty) \). (Type your answer in interval notation) B. The domain of \( f g \) is \( \square \) \} (Use a comma to separate answers as needed.) C. The domain of fg is \( \varnothing \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( f+g \), we combine \( f(x) = \sqrt{x} \) and \( g(x) = x-9 \): \[ f+g = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9. \] The domain of \( f + g \) is determined by both functions: \( \sqrt{x} \) is defined for \( x \geq 0 \), and \( g(x) = x - 9 \) is defined for all \( x \). Thus, the overall domain is \( [0, \infty) \). Now, we find \( f - g \): \[ f - g = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9. \] As for the domain, since \( \sqrt{x} \) restricts \( x \) to non-negative values, the domain of \( f-g \) is also \( [0, \infty) \). Next, let’s find \( fg \): \[ fg = f(x) \cdot g(x) = \sqrt{x}(x - 9) = (x - 9)\sqrt{x}. \] Once again, the domain is governed by \( \sqrt{x} \), which is valid for \( x \geq 0 \), with \( g(x) \) being valid for any \( x \). Thus, the domain for \( fg \) remains \( [0, \infty) \). Last but not least, we compute \( \frac{1}{g} \): \[ \frac{1}{g} = \frac{1}{x - 9}. \] The domain here includes all \( x \) except where \( g(x) = 0 \), or \( x = 9 \). Therefore, the domain of \( \frac{1}{g} \) is \( (-\infty, 9) \cup (9, \infty) \). So to summarize: - For \( f + g \): \( [0, \infty) \). - For \( f - g \): \( [0, \infty) \). - For \( fg \): \( [0, \infty) \). - For \( \frac{1}{g} \): \( (-\infty, 9) \cup (9, \infty) \). Enjoy exploring these functions!