Pregunta
upstudy study bank question image url

Find \( f+g, f-g \), \( f \), and \( \frac{1}{g} \). Determine the domain for each function. \[ f(x)=\sqrt{x} ; g(x)=x-9 \] C. ille vomain oi \( 1+\mathrm{g} \) is \( \wp \). \( (f-g)(x)=\sqrt{x}-x+9 \) (Simplify your answer.) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( [0, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{\quad \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \) \( (\mathrm{fg})(\mathrm{x})=(\mathrm{x}-9) \sqrt{\mathrm{x}} \) (Simplify your answer.) What is the domain of fg ? A. The domain of fg is \( [1,2) \cup(2, \infty) \). (Type your answer in interval notation) B. The domain of \( f g \) is \( \square \) \} (Use a comma to separate answers as needed.) C. The domain of fg is \( \varnothing \)

Ask by Luna Mills. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Domains:** 1. \( f + g \): \( [0, \infty) \) 2. \( f - g \): \( [0, \infty) \) 3. \( f \): \( [0, \infty) \) 4. \( \frac{1}{g} \): \( (-\infty, 9) \cup (9, \infty) \) 5. \( f \cdot g \): \( [0, \infty) \) **Multiple Choice Answers:** - **Domain of \( f - g \):** **A.** \( [0, \infty) \) - **Domain of \( f \cdot g \):** **A.** \( [0, \infty) \)

Solución

Let's analyze the functions \( f(x) = \sqrt{x} \) and \( g(x) = x - 9 \). We'll find \( f + g \), \( f - g \), \( f \), and \( \frac{1}{g} \), along with their respective domains. ### 1. \( f + g \) \[ (f + g)(x) = f(x) + g(x) = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9 \] **Domain of \( f + g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). The domain of \( f + g \) is the intersection of the domains of \( f \) and \( g \), which is: \[ \text{Domain of } (f + g) = [0, \infty) \] --- ### 2. \( f - g \) \[ (f - g)(x) = f(x) - g(x) = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9 \] **Domain of \( f - g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). The domain of \( f - g \) is the intersection of the domains of \( f \) and \( g \), which is: \[ \text{Domain of } (f - g) = [0, \infty) \] **Simplification:** \[ (f - g)(x) = \sqrt{x} - x + 9 \] --- ### 3. \( f(x) = \sqrt{x} \) **Domain of \( f \):** \[ \text{Domain of } f = [0, \infty) \] --- ### 4. \( \frac{1}{g} \) \[ \left( \frac{1}{g} \right)(x) = \frac{1}{x - 9} \] **Domain of \( \frac{1}{g} \):** - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \), except where the denominator is zero. - The denominator \( x - 9 \neq 0 \) implies \( x \neq 9 \). Thus, the domain is all real numbers except \( x = 9 \): \[ \text{Domain of } \frac{1}{g} = (-\infty, 9) \cup (9, \infty) \] --- ### 5. \( f \cdot g \) \[ (f \cdot g)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot (x - 9) \] **Domain of \( f \cdot g \):** - **\( f(x) = \sqrt{x} \)** is defined for \( x \geq 0 \). - **\( g(x) = x - 9 \)** is defined for all real numbers \( x \). The domain of \( f \cdot g \) is the intersection of the domains of \( f \) and \( g \), which is: \[ \text{Domain of } (f \cdot g) = [0, \infty) \] **Simplification:** \[ (f \cdot g)(x) = (x - 9)\sqrt{x} \] --- ### Summary of Domains 1. **\( f + g \):** \( [0, \infty) \) 2. **\( f - g \):** \( [0, \infty) \) 3. **\( f \):** \( [0, \infty) \) 4. **\( \frac{1}{g} \):** \( (-\infty, 9) \cup (9, \infty) \) 5. **\( f \cdot g \):** \( [0, \infty) \) ### Multiple Choice Answers Based on the provided multiple-choice options: - **Domain of \( f - g \):** **A.** \( [0, \infty) \) - **Domain of \( f \cdot g \):** **A.** \( [0, \infty) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( f+g \), we combine \( f(x) = \sqrt{x} \) and \( g(x) = x-9 \): \[ f+g = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9. \] The domain of \( f + g \) is determined by both functions: \( \sqrt{x} \) is defined for \( x \geq 0 \), and \( g(x) = x - 9 \) is defined for all \( x \). Thus, the overall domain is \( [0, \infty) \). Now, we find \( f - g \): \[ f - g = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9. \] As for the domain, since \( \sqrt{x} \) restricts \( x \) to non-negative values, the domain of \( f-g \) is also \( [0, \infty) \). Next, let’s find \( fg \): \[ fg = f(x) \cdot g(x) = \sqrt{x}(x - 9) = (x - 9)\sqrt{x}. \] Once again, the domain is governed by \( \sqrt{x} \), which is valid for \( x \geq 0 \), with \( g(x) \) being valid for any \( x \). Thus, the domain for \( fg \) remains \( [0, \infty) \). Last but not least, we compute \( \frac{1}{g} \): \[ \frac{1}{g} = \frac{1}{x - 9}. \] The domain here includes all \( x \) except where \( g(x) = 0 \), or \( x = 9 \). Therefore, the domain of \( \frac{1}{g} \) is \( (-\infty, 9) \cup (9, \infty) \). So to summarize: - For \( f + g \): \( [0, \infty) \). - For \( f - g \): \( [0, \infty) \). - For \( fg \): \( [0, \infty) \). - For \( \frac{1}{g} \): \( (-\infty, 9) \cup (9, \infty) \). Enjoy exploring these functions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad