11 The sum to \( n \) terms of an arithmetic sequence is given by: \( S_{n}=63 n-3 n^{2} \) a Calculate the 4th term. b Determine the value(s) of \( n \) if the sum of \( n \) terms is -300 .
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To calculate the 4th term of the arithmetic sequence, we can use the formula for the sum of \( n \) terms, \( S_n = 63n - 3n^2 \). The \( n \)th term, \( a_n \), can be found using the relation \( a_n = S_n - S_{n-1} \). First, calculate \( S_4 \): \[ S_4 = 63(4) - 3(4^2) = 252 - 48 = 204. \] Next, calculate \( S_3 \): \[ S_3 = 63(3) - 3(3^2) = 189 - 27 = 162. \] Now, find the 4th term: \[ a_4 = S_4 - S_3 = 204 - 162 = 42. \] So the 4th term is \( 42 \). Next, to find \( n \) when \( S_n = -300 \): Set up the equation: \[ 63n - 3n^2 = -300. \] Rearranging gives: \[ 3n^2 - 63n - 300 = 0. \] Dividing by 3: \[ n^2 - 21n - 100 = 0. \] Now, apply the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{21 \pm \sqrt{(-21)^2 - 4(1)(-100)}}{2(1)} = \frac{21 \pm \sqrt{441 + 400}}{2} = \frac{21 \pm \sqrt{841}}{2} = \frac{21 \pm 29}{2}. \] This results in: \[ n = \frac{50}{2} = 25 \quad \text{and} \quad n = \frac{-8}{2} = -4. \] Since \( n \) must be a positive integer, the valid value is \( n = 25 \). Summarizing: a) The 4th term is \( 42 \). b) The value of \( n \) for which the sum of \( n \) terms is -300 is \( n = 25 \).