The metallic radius of a potassium atom is 231 pm . What is the volume of a potassium atom in cubic meters? \( \mathrm{m}^{3} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the volume of a potassium atom, we can model it as a sphere. The formula for the volume \( V \) of a sphere is given by: \[ V = \frac{4}{3} \pi r^3 \] First, we need to convert the metallic radius from picometers (pm) to meters (m). The metallic radius of potassium is 231 pm, which is equal to \( 231 \times 10^{-12} \) m. Now, substituting \( r = 231 \times 10^{-12} \) m into the volume formula: \[ V = \frac{4}{3} \pi (231 \times 10^{-12})^3 \] Calculating this yields: \[ V = \frac{4}{3} \pi (1.233 \times 10^{-33}) \approx 5.16 \times 10^{-34} \, \mathrm{m}^3 \] So, the volume of a potassium atom is approximately \( 5.16 \times 10^{-34} \, \mathrm{m}^3 \). When it comes to the timeline of elements on the periodic table, potassium (K) was discovered in 1807 by Sir Humphry Davy through the process of electrolysis. This vibrant element plays a crucial role in plant growth and is essential for various biological processes, making it an integral part of fertilizers and soil health! Jumping to the kitchen, potassium is not just a science subject! It's found in bananas, potatoes, and spinach; so, when you’re snacking on these healthy foods, you're also boosting your potassium levels, which helps with nerve function and muscle contractions. Who knew chemistry could be so delicious?