10: Mathematics Baseline Assessment 2024 Term I STION 1 Which one of the following numbers is rational? \[ 2,3 ; \sqrt{-25} ; \pi ; \sqrt[3]{17} \] Determine the value (in scientific notation) of: \[ 3,7 \times 10^{-7} \times 2 \times 10^{4} \] Simplify: 1.3.1 \( \quad \frac{3^{x}+3^{x+2}}{3^{x+3}} \) 1.3 .2 \[ \sqrt{0,06 y^{4}+0,1 y^{4}} \] 1.3 .3 \[ 3(x-3)(x+3)-(x-1)^{2} \] STION 2 Factorise the following: 2.1.1 \( 2 x^{2}+6 x-20 \) 2.1.2 \( 9 x(5 a-b)+2(b-5 a) \) Solve for \( x \) : 2.2.1 \( x(2 x-1)=0 \) \( 2.2 .2 \quad 27 \cdot 3^{x}=1 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The only rational number among the options given is \( 2.3 \) because rational numbers are defined as any number that can be expressed as a fraction of two integers. The other options include \( \sqrt{-25} \) (which is imaginary), \( \pi \) (which is an irrational number), and \( \sqrt[3]{17} \) (which is also irrational, though rational if we’re talking about cube roots). For the scientific notation calculation, \( 3.7 \times 10^{-7} \times 2 \times 10^{4} \) results in \( 7.4 \times 10^{-3} \). You multiply the decimal parts (3.7 and 2) to get 7.4, and then you add the exponents of 10 (–7 and 4) to get –3, leading to the final result. Now, for the simplification questions: 1.3.1 simplifies to \( \frac{3^{x}+3^{x+2}}{3^{x+3}} = \frac{3^{x}(1+3^{2})}{3^{x+3}} = \frac{10}{27} \). 1.3.2 simplifies to \( \sqrt{0.06y^{4}+0.1y^{4}} = \sqrt{0.16y^{4}} = 0.4y^{2} \). 1.3.3 simplifies as follows: \( 3(x-3)(x+3)-(x-1)^{2} = 3(x^2-9) - (x^2-2x+1) = 2x^{2}+6x-28 \). For factorisation: 2.1.1 becomes \( 2(x^2+3x-10) \) and can be further simplified to \( 2(x+5)(x-2) \). 2.1.2 simplifies to \( x(9(5a-b)+2(b-5a)) \) which can lead to factorising \( 37ab - 35a^2 \). And solving for \( x \): 2.2.1 gives \( x=0 \) or \( x=\frac{1}{2} \). 2.2.2 results in \( x=0 \) as \( 27 = 3^3 \), hence \( 3^{x} = 3^{-3} \).