Pregunta
upstudy study bank question image url

10: Mathematics Baseline Assessment 2024 Term I STION 1 Which one of the following numbers is rational? \[ 2,3 ; \sqrt{-25} ; \pi ; \sqrt[3]{17} \] Determine the value (in scientific notation) of: \[ 3,7 \times 10^{-7} \times 2 \times 10^{4} \] Simplify: 1.3.1 \( \quad \frac{3^{x}+3^{x+2}}{3^{x+3}} \) 1.3 .2 \[ \sqrt{0,06 y^{4}+0,1 y^{4}} \] 1.3 .3 \[ 3(x-3)(x+3)-(x-1)^{2} \] STION 2 Factorise the following: 2.1.1 \( 2 x^{2}+6 x-20 \) 2.1.2 \( 9 x(5 a-b)+2(b-5 a) \) Solve for \( x \) : 2.2.1 \( x(2 x-1)=0 \) \( 2.2 .2 \quad 27 \cdot 3^{x}=1 \)

Ask by Zimmerman Mcguire. in South Africa
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Mathematics Baseline Assessment 2024 Term I Solutions** --- **Question 1:** 1. **Identify the Rational Number:** - **Options:** - \(2.3\) - \(\sqrt{-25}\) - \(\pi\) - \(\sqrt[3]{17}\) - **Answer:** \(2.3\) is the rational number. 2. **Value in Scientific Notation:** \[ 3.7 \times 10^{-7} \times 2 \times 10^{4} = 7.4 \times 10^{-3} \] - **Answer:** \(7.4 \times 10^{-3}\) 3. **Simplifications:** - **1.3.1:** \[ \frac{3^{x} + 3^{x+2}}{3^{x+3}} = \frac{10}{27} \] - **Answer:** \(\frac{10}{27}\) - **1.3.2:** \[ \sqrt{0.06 y^{4} + 0.1 y^{4}} = 0.4 y^{2} \] - **Answer:** \(0.4 y^{2}\) - **1.3.3:** \[ 3(x-3)(x+3) - (x-1)^{2} = 2(x^{2} + x - 14) \] - **Answer:** \(2(x^{2} + x - 14)\) --- **Question 2:** 1. **Factorisation:** - **2.1.1:** \[ 2x^{2} + 6x - 20 = 2(x - 2)(x + 5) \] - **Answer:** \(2(x - 2)(x + 5)\) - **2.1.2:** \[ 9x(5a - b) + 2(b - 5a) = (5a - b)(9x - 2) \] - **Answer:** \((5a - b)(9x - 2)\) 2. **Solve for \(x\):** - **2.2.1:** \[ x(2x - 1) = 0 \Rightarrow x = 0 \text{ or } x = \frac{1}{2} \] - **Answer:** \(x = 0\) or \(x = \frac{1}{2}\) - **2.2.2:** \[ 27 \cdot 3^{x} = 1 \Rightarrow x = -3 \] - **Answer:** \(x = -3\) --- I hope these solutions help you understand each problem thoroughly! If you have any further questions or need additional explanations, feel free to ask.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

The only rational number among the options given is \( 2.3 \) because rational numbers are defined as any number that can be expressed as a fraction of two integers. The other options include \( \sqrt{-25} \) (which is imaginary), \( \pi \) (which is an irrational number), and \( \sqrt[3]{17} \) (which is also irrational, though rational if we’re talking about cube roots). For the scientific notation calculation, \( 3.7 \times 10^{-7} \times 2 \times 10^{4} \) results in \( 7.4 \times 10^{-3} \). You multiply the decimal parts (3.7 and 2) to get 7.4, and then you add the exponents of 10 (–7 and 4) to get –3, leading to the final result. Now, for the simplification questions: 1.3.1 simplifies to \( \frac{3^{x}+3^{x+2}}{3^{x+3}} = \frac{3^{x}(1+3^{2})}{3^{x+3}} = \frac{10}{27} \). 1.3.2 simplifies to \( \sqrt{0.06y^{4}+0.1y^{4}} = \sqrt{0.16y^{4}} = 0.4y^{2} \). 1.3.3 simplifies as follows: \( 3(x-3)(x+3)-(x-1)^{2} = 3(x^2-9) - (x^2-2x+1) = 2x^{2}+6x-28 \). For factorisation: 2.1.1 becomes \( 2(x^2+3x-10) \) and can be further simplified to \( 2(x+5)(x-2) \). 2.1.2 simplifies to \( x(9(5a-b)+2(b-5a)) \) which can lead to factorising \( 37ab - 35a^2 \). And solving for \( x \): 2.2.1 gives \( x=0 \) or \( x=\frac{1}{2} \). 2.2.2 results in \( x=0 \) as \( 27 = 3^3 \), hence \( 3^{x} = 3^{-3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad