Pregunta
upstudy study bank question image url

number of ways of distributing 10 identical balls among 3 kids such that each of kid gets atleast one ball

Ask by Barrett Martinez. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 36 ways to distribute the 10 identical balls among the 3 kids, with each kid getting at least one ball.

Solución

To determine the number of ways to distribute 10 identical balls among 3 kids such that each kid receives at least one ball, we can use the **stars and bars** method in combinatorics. ### Step-by-Step Solution: 1. **Ensure Each Kid Gets at Least One Ball:** Since each kid must receive at least one ball, we can initially give 1 ball to each kid. This accounts for 3 balls (one for each kid), leaving us with \(10 - 3 = 7\) balls to distribute freely. 2. **Apply the Stars and Bars Theorem:** - **Stars:** Represent the 7 remaining identical balls. - **Bars:** Represent the dividers between the 3 kids. The problem now reduces to finding the number of ways to place 2 dividers among the 7 balls, which translates to the number of combinations of 9 items taken 2 at a time (7 stars + 2 bars). 3. **Calculate the Combinations:** \[ \text{Number of ways} = \binom{7 + 2}{2} = \binom{9}{2} = \frac{9 \times 8}{2 \times 1} = 36 \] ### Final Answer: There are **36** ways to distribute the 10 identical balls among the 3 kids, ensuring each kid gets at least one ball.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the problem of distributing 10 identical balls among 3 kids with the condition that each kid receives at least one ball, we can start by giving one ball to each kid. This uses up 3 balls, leaving us with 7 balls to distribute. Now, the problem reduces to distributing these 7 identical balls among 3 kids, where some kids can receive zero balls. The formula for distributing \( n \) identical items into \( r \) distinct groups is given by the "stars and bars" theorem. Here, we need to calculate the number of non-negative integer solutions to the equation: \[ x_1 + x_2 + x_3 = 7 \] The number of solutions can be computed using the formula: \[ \binom{n + r - 1}{r - 1} \] In this case, \( n = 7 \) (the remaining balls) and \( r = 3 \) (the kids), so we have: \[ \binom{7 + 3 - 1}{3 - 1} = \binom{9}{2} = 36 \] So, there are 36 ways to distribute the 10 identical balls among 3 kids, ensuring that each kid gets at least one ball! Think of it like hosting a party! You’ve got 10 identical cupcakes to share with 3 kids. After giving each one a cupcake to start, you’re left with 7 cupcakes to distribute however you like. The way to figure out the distribution magic is like placing invisible dividers (the bars) to separate the cupcakes into kid portions, leading to some seriously sweet math skills! This topic touches on combinatorics, which is a branch of mathematics dealing with counting, arrangements, and combinations. If you're keen to dive deeper, consider exploring resources like "Enumerative Combinatorics" by Richard Stanley, which beautifully expands on various methods to count and arrange objects!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad