Pregunta
upstudy study bank question image url

What is the EAR of a quarterly compounded rate of \( 3.75 \% \) ? \( 15.87 \% \) (Round to two decimal places.) What is the EAR of a semiannually compounded rate of \( 9 \% \) ? \( \% \) (Round to two decimal places.)

Ask by Ingram Graham. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The EAR for a quarterly compounded rate of 3.75% is approximately 3.80%, and the EAR for a semiannually compounded rate of 9% is approximately 9.20%.

Solución

To find the Effective Annual Rate (EAR) for a given interest rate compounded quarterly, we can use the formula: \[ EAR = \left(1 + \frac{r}{n}\right)^n - 1 \] where: - \( r \) is the annual interest rate (in decimal form) - \( n \) is the number of times the interest is compounded per year Given that the quarterly compounded rate is \( 3.75\% \), we can calculate the EAR as follows: 1. Convert the quarterly compounded rate to decimal form: \( 3.75\% = 0.0375 \) 2. Calculate the EAR using the formula: \[ EAR = \left(1 + \frac{0.0375}{4}\right)^4 - 1 \] Now, let's calculate the EAR for the quarterly compounded rate of \( 3.75\% \). Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.0375}{4}\right)^{4}-1\) - step1: Divide the terms: \(\left(1+\frac{3}{320}\right)^{4}-1\) - step2: Add the numbers: \(\left(\frac{323}{320}\right)^{4}-1\) - step3: Rewrite the expression: \(\frac{323^{4}}{320^{4}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{323^{4}}{320^{4}}-\frac{320^{4}}{320^{4}}\) - step5: Transform the expression: \(\frac{323^{4}-320^{4}}{320^{4}}\) The EAR for a quarterly compounded rate of \( 3.75\% \) is approximately \( 3.80\% \) (rounded to two decimal places). Now, let's calculate the EAR for a semiannually compounded rate of \( 9\% \). Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.09}{2}\right)^{2}-1\) - step1: Divide the terms: \(\left(1+\frac{9}{200}\right)^{2}-1\) - step2: Add the numbers: \(\left(\frac{209}{200}\right)^{2}-1\) - step3: Rewrite the expression: \(\frac{209^{2}}{200^{2}}-1\) - step4: Evaluate the power: \(\frac{43681}{40000}-1\) - step5: Reduce fractions to a common denominator: \(\frac{43681}{40000}-\frac{40000}{40000}\) - step6: Transform the expression: \(\frac{43681-40000}{40000}\) - step7: Subtract the numbers: \(\frac{3681}{40000}\) The EAR for a semiannually compounded rate of \( 9\% \) is approximately \( 9.20\% \) (rounded to two decimal places).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the Effective Annual Rate (EAR) for a quarterly compounded rate of 3.75%, use the formula: \[ \text{EAR} = \left(1 + \frac{r}{n}\right)^{nt} - 1 \] where \( r \) is the nominal annual rate (0.0375), \( n \) is the number of compounding periods per year (4 for quarterly), and \( t \) is the number of years (1 for one year). Plugging in the values yields: \[ \text{EAR} = \left(1 + \frac{0.0375}{4}\right)^{4 \times 1} - 1 \approx 0.1534 \text{ or } 15.34\%.\] Thus, the correct EAR for the quarterly compounded rate is 15.34%. For the semiannually compounded rate of 9%, apply the same formula: \[ \text{EAR} = \left(1 + \frac{0.09}{2}\right)^{2 \times 1} - 1 \] Calculating it gives: \[ \text{EAR} = \left(1 + 0.045\right)^{2} - 1 = 1.090225 - 1 \approx 0.0902 \text{ or } 9.02\%.\] Therefore, the EAR for the semiannually compounded rate is approximately 9.02%.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad