Pregunta
Solve the inequality for \( x \) \[ \frac{x}{4}-1 \leq-5 \]
Ask by Daniel Wheeler. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x \leq -16 \)
Solución
To solve the inequality:
\[
\frac{x}{4} - 1 \leq -5
\]
follow these steps:
1. **Add 1 to both sides** to isolate the term with \( x \):
\[
\frac{x}{4} - 1 + 1 \leq -5 + 1
\]
\[
\frac{x}{4} \leq -4
\]
2. **Multiply both sides by 4** to solve for \( x \). Since 4 is a positive number, the direction of the inequality remains the same:
\[
x \leq -4 \times 4
\]
\[
x \leq -16
\]
**Solution:**
\[
x \leq -16
\]
This means that any real number \( x \) that is less than or equal to \(-16\) satisfies the inequality.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the inequality \( \frac{x}{4}-1 \leq-5 \), we first isolate the term with \( x \) on one side. 1. Add 1 to both sides: \[ \frac{x}{4} \leq -5 + 1 \] \[ \frac{x}{4} \leq -4 \] 2. Now, multiply both sides by 4 to eliminate the fraction (remember, since we are multiplying by a positive number, the inequality direction remains the same): \[ x \leq -16 \] Thus, the solution to the inequality is: \[ x \leq -16 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium