Pregunta
The point \( (4,64) \) is on the graph of \( f(x)=x^{3} \). What is the point \( (4,64) \) shifted to when \( g(x)=f(x)+8 \) ? (1 point) \( (-4,72) \) \( (4,58) \) \( (4,72) \) \( (72,4) \)
Ask by Bond Morrison. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The point \( (4, 64) \) shifts to \( (4, 72) \).
Solución
When you shift the graph of \( f(x) = x^3 \) by adding 8 to obtain \( g(x) = f(x) + 8 \), you are moving every point on the graph up by 8 units.
Given the point \( (4, 64) \) on \( f(x) \):
\[
g(4) = f(4) + 8 = 64 + 8 = 72
\]
So, the new point after the shift is \( (4, 72) \).
**Answer:** \( \boxed{(4,72)} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
When we have the function \( g(x) = f(x) + 8 \), it means that we are shifting the entire graph of \( f(x) \) upwards by 8 units. Therefore, if the point \( (4, 64) \) is on the graph of \( f(x) \), then to find the corresponding point on the graph of \( g(x) \), we simply add 8 to the y-coordinate of the point. So, from \( (4, 64) \), we calculate the new y-coordinate: \[ 64 + 8 = 72 \] Thus, the new point is \( (4, 72) \). The correct answer is \( (4,72) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium