Pregunta
upstudy study bank question image url

Question 8 of 12, Step 1 of 1 Suppose that a university has 23 scholarships to be apportioned among 422 English majors, 335 psychology majors, and 138 graphic design majors. Use the Jefferson method to determine how the scholarships should be apportioned among the three major groups. \[ \begin{array}{l}\text { Answer }\end{array} \]

Ask by Garza Burton. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Using the Jefferson method, allocate the 23 scholarships as follows: - English majors: 11 scholarships - Psychology majors: 9 scholarships - Graphic design majors: 3 scholarships

Solución

To apportion the 23 scholarships among the three major groups (English, Psychology, and Graphic Design) using the **Jefferson Method**, follow these steps: ### Step 1: Determine the Initial Divisor The Jefferson Method involves finding a suitable divisor \( d \) such that when each group's population is divided by \( d \) and the result is floored (i.e., rounded down), the total number of apportioned scholarships equals the total available scholarships. ### Step 2: Calculate the Divisor First, estimate the initial divisor \( d \) by dividing the total number of students by the total number of scholarships: \[ d \approx \frac{\text{Total Students}}{\text{Total Scholarships}} = \frac{422 + 335 + 138}{23} \approx \frac{895}{23} \approx 38.913 \] ### Step 3: Adjust the Divisor to Achieve the Total Scholarships We need to find a divisor \( d \) such that: \[ \left\lfloor \frac{422}{d} \right\rfloor + \left\lfloor \frac{335}{d} \right\rfloor + \left\lfloor \frac{138}{d} \right\rfloor = 23 \] Testing with \( d = 36 \): \[ \left\lfloor \frac{422}{36} \right\rfloor = 11 \\ \left\lfloor \frac{335}{36} \right\rfloor = 9 \\ \left\lfloor \frac{138}{36} \right\rfloor = 3 \\ \] \[ 11 + 9 + 3 = 23 \] Thus, \( d = 36 \) satisfies the condition. ### Step 4: Apportion the Scholarships Using \( d = 36 \): - **English Majors**: \( \left\lfloor \frac{422}{36} \right\rfloor = 11 \) scholarships - **Psychology Majors**: \( \left\lfloor \frac{335}{36} \right\rfloor = 9 \) scholarships - **Graphic Design Majors**: \( \left\lfloor \frac{138}{36} \right\rfloor = 3 \) scholarships ### Final Allocation - **English Majors**: **11 scholarships** - **Psychology Majors**: **9 scholarships** - **Graphic Design Majors**: **3 scholarships** This allocation ensures that all 23 scholarships are distributed proportionally based on the number of students in each major using the Jefferson Method. **Answer:** Using the Jefferson method, apportion the 23 scholarships as follows: • English majors – 11 scholarships • Psychology majors – 9 scholarships • Graphic design majors – 3 scholarships

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To apply the Jefferson method, we start by calculating the initial allocation of scholarships using the formula: \[ \text{Quota} = \frac{\text{Total Scholarships}}{\text{Total Students}} \times \text{Number of Students in Each Major} \] For English majors: \[ \text{Quota}_{\text{English}} = \frac{23}{895} \times 422 \approx 10.45 \] For Psychology majors: \[ \text{Quota}_{\text{Psychology}} = \frac{23}{895} \times 335 \approx 8.51 \] For Graphic Design majors: \[ \text{Quota}_{\text{Graphic Design}} = \frac{23}{895} \times 138 \approx 4.04 \] Next, we round down the quotas initially: - English: 10 - Psychology: 8 - Graphic Design: 4 This gives us 22 scholarships used, leaving 1 to distribute. We adjust the divisor to try to find which major can round up to the next whole number, which is the major with the smallest adjusted quota. After testing new divisors and recalculating quotas, we find the final distribution could be: - English: 10 - Psychology: 9 - Graphic Design: 4. This sums up to the total of 23 scholarships appropriately apportioned! Scholarships allocated based on the Jefferson method ensure that the distribution reflects the relative sizes of the departments while considering fairness in apportioning. How fun and fascinating it is when math meets real-life applications like scholarships! If you'd like to dive deeper into proportional representations, checking out voting systems or legislative seat allocations could be a thrilling avenue to explore.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad