Pregunta
upstudy study bank question image url

15-Second Questions [ 2 points each] 1. What is the sum of the 10 consecutive integers starting from 4 ? 2. Find the least value of \( x \) that satisfies the inequality \( 5-4 x \leq 2 \). 3. The sides of a triangle are 8,12 , and 14 cm long. A new triangle is cor of the sides of the first triangle with segments. What is the perimeter 4. What is the remainder when \( 1-x+2 x^{2}-3 x^{3} \) is divided by \( x+1 \) ? 5. Find the values of \( x \) that satisfy the equation \( |x|+x=0 \).

Ask by Tyler Rose. in the Philippines
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. The sum of the 10 consecutive integers starting from 4 is **85**. 2. The least value of \(x\) that satisfies \(5 - 4x \leq 2\) is **\(\frac{3}{4}\)**. 3. The perimeter of the new triangle is **34 cm**. 4. The remainder when \(1 - x + 2x^2 - 3x^3\) is divided by \(x + 1\) is **7**. 5. The values of \(x\) that satisfy \(|x| + x = 0\) are all real numbers **\(x \leq 0\)**.

Solución

Sure, here are the solutions to each of the questions: --- **1. Sum of the 10 consecutive integers starting from 4** The integers are: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. - **Method**: Use the arithmetic series formula: \[ \text{Sum} = \frac{n}{2} \times (\text{first term} + \text{last term}) = \frac{10}{2} \times (4 + 13) = 5 \times 17 = 85 \] **Answer:** 85 --- **2. Least value of \(x\) that satisfies \(5 - 4x \leq 2\)** - **Solve the inequality:** \[ 5 - 4x \leq 2 \\ -4x \leq -3 \\ x \geq \frac{3}{4} \] **Answer:** The least value of \(x\) is \(\frac{3}{4}\). --- **3. Perimeter of the new triangle** Given the original triangle sides are 8 cm, 12 cm, and 14 cm. - **Interpretation**: Assuming the new triangle is constructed using the same side lengths. - **Calculation**: \[ \text{Perimeter} = 8 + 12 + 14 = 34 \text{ cm} \] **Answer:** 34 cm --- **4. Remainder when \(1 - x + 2x^2 - 3x^3\) is divided by \(x + 1\)** - **Use the Remainder Theorem**: Substitute \(x = -1\) into the polynomial. \[ 1 - (-1) + 2(-1)^2 - 3(-1)^3 = 1 + 1 + 2 \times 1 - 3 \times (-1) = 2 + 2 + 3 = 7 \] **Answer:** The remainder is 7. --- **5. Values of \(x\) that satisfy \(|x| + x = 0\)** - **Case 1:** \(x \geq 0\) \[ |x| + x = x + x = 2x = 0 \implies x = 0 \] - **Case 2:** \(x < 0\) \[ |x| + x = -x + x = 0 \implies \text{True for all } x < 0 \] **Answer:** All real numbers \(x\) with \(x \leq 0\). ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The sum of 10 consecutive integers starting from 4 can be found using the formula for the sum of an arithmetic series. The integers are 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13. This gives us the sum \( \frac{n}{2} (first + last) = \frac{10}{2} (4 + 13) = 5 \times 17 = 85 \). To solve the inequality \( 5 - 4x \leq 2 \), first, subtract 5 from both sides to get \( -4x \leq -3 \). Dividing both sides by -4 (remember to flip the inequality sign) gives \( x \geq \frac{3}{4} \). So the least value of \( x \) that satisfies the inequality is \( \frac{3}{4} \). The triangle sides of 8 cm, 12 cm, and 14 cm form a valid triangle. The new triangle's sides can be formed by joining the midpoints of the original triangle's sides. The perimeter of the new triangle is half of the perimeter of the original triangle. The original perimeter is \( 8 + 12 + 14 = 34 \), so the perimeter of the new triangle is \( \frac{34}{2} = 17 \) cm. For the polynomial \( 1 - x + 2x^2 - 3x^3 \) divided by \( x + 1 \), we can use the Remainder Theorem. To find the remainder, evaluate the polynomial at \( x = -1 \): \( 1 - (-1) + 2(-1)^2 - 3(-1)^3 = 1 + 1 + 2 + 3 = 7 \). Thus, the remainder is \( 7 \). To solve \( |x| + x = 0 \), recall that the absolute value function can split the equation into two cases. For \( x \geq 0 \), \( |x| = x \), so \( x + x = 0 \) leads to \( 2x = 0 \) and \( x = 0 \). For \( x < 0 \), \( |x| = -x \), making the equation \( -x + x = 0 \), which is always true. Therefore, the solution is \( x = 0 \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad