Use a sum or difference formula to find the exact value of the trigonometric function. \( \cos 75^{\circ} \) \( \cos 75^{\circ}= \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( \cos 75^{\circ} \), we can use the cosine sum formula. We know that \( 75^{\circ} = 45^{\circ} + 30^{\circ} \). Applying the cosine sum formula, we have: \[ \cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ} \] Now we can substitute the known values: - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \sin 30^{\circ} = \frac{1}{2} \) So we have: \[ \cos(75^{\circ}) = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] This simplifies to: \[ \cos(75^{\circ}) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \] Thus, the exact value of \( \cos 75^{\circ} \) is \[ \boxed{\frac{\sqrt{6} - \sqrt{2}}{4}}. \]