Pregunta
upstudy study bank question image url

A system of equations is given. \( \begin{array}{l}-2 y=10-5 x \\ -3 y=-4 x+15\end{array} \) Solve for \( (x, y) \) using the elimination method. Show all work.

Ask by Bird Weaver. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( (x, y) = (0, -5) \)

Solución

Solve the system of equations \( -2y=10-5x;-3y=-4x+15 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-2y=10-5x\\-3y=-4x+15\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{2y+10}{5}\\-3y=-4x+15\end{array}\right.\) - step2: Substitute the value of \(x:\) \(-3y=-4\times \frac{2y+10}{5}+15\) - step3: Simplify: \(-3y=-\frac{4\left(2y+10\right)}{5}+15\) - step4: Multiply both sides of the equation by LCD: \(-3y\times 5=\left(-\frac{4\left(2y+10\right)}{5}+15\right)\times 5\) - step5: Simplify the equation: \(-15y=-8y+35\) - step6: Move the variable to the left side: \(-15y+8y=35\) - step7: Add the terms: \(-7y=35\) - step8: Change the signs: \(7y=-35\) - step9: Divide both sides: \(\frac{7y}{7}=\frac{-35}{7}\) - step10: Divide the numbers: \(y=-5\) - step11: Substitute the value of \(y:\) \(x=\frac{2\left(-5\right)+10}{5}\) - step12: Simplify: \(x=0\) - step13: Calculate: \(\left\{ \begin{array}{l}x=0\\y=-5\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}x=0\\y=-5\end{array}\right.\) - step15: Rewrite: \(\left(x,y\right) = \left(0,-5\right)\) The solution to the system of equations using the elimination method is \( (x, y) = (0, -5) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's solve the given system of equations using the elimination method step by step. The system of equations is: 1. \(-2y = 10 - 5x\) 2. \(-3y = -4x + 15\) First, we can rearrange both equations into standard form \(Ax + By = C\). 1. From \(-2y = 10 - 5x\), we can rewrite it as: \[5x - 2y = 10\] 2. From \(-3y = -4x + 15\), we rearrange it to: \[4x - 3y = 15\] Now we have: \[ \begin{array}{l} 5x - 2y = 10 \quad (1) \\ 4x - 3y = 15 \quad (2) \end{array} \] Next, we will manipulate these equations to eliminate one variable. Let's multiply equation (1) by 3 and equation (2) by 2 to align the coefficients of \(y\): Multiplying equation (1) by 3: \[ 15x - 6y = 30 \quad (3) \] Multiplying equation (2) by 2: \[ 8x - 6y = 30 \quad (4) \] Now we will subtract equation (4) from equation (3): \[ (15x - 6y) - (8x - 6y) = 30 - 30 \] This simplifies to: \[ 15x - 8x = 0 \] \[ 7x = 0 \] Therefore, solving for \(x\): \[ x = 0 \] Now, substitute \(x = 0\) back into either of the original equations to find \(y\). We can use equation (1): \[ 5(0) - 2y = 10 \] \[ -2y = 10 \] \[ y = -5 \] Thus, the solution to the system of equations is: \[ (x, y) = (0, -5) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad