Pregunta
upstudy study bank question image url

Solve the given differential equation. \( e^{x^{2}} d y=x \sqrt{3-y} d x \) Choose the correct answer below. A. \( 3 \sqrt{4-y}=e^{-x^{2}}+C \) B. \( y=3-\frac{e^{-x^{4}}}{4}+C \) C. \( 4 \sqrt{3-y}=e^{-x^{2}}+C \) D. \( \sqrt{3-y}=4 e^{-x^{2}}+C \)

Ask by Bowman Wade. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct answer is \( 4 \sqrt{3 - y} = e^{-x^{2}} + C \), which corresponds to option C.

Solución

To solve the differential equation: \[ e^{x^{2}} \, dy = x \sqrt{3 - y} \, dx \] **Step 1: Separate the Variables** First, we'll rewrite the equation to separate the variables \( y \) and \( x \): \[ \frac{dy}{\sqrt{3 - y}} = x e^{-x^{2}} \, dx \] **Step 2: Integrate Both Sides** Next, integrate both sides of the equation. **Left Side:** Let \( u = 3 - y \). Then, \( du = -dy \), and the integral becomes: \[ \int \frac{dy}{\sqrt{3 - y}} = -\int \frac{du}{\sqrt{u}} = -2\sqrt{u} = -2\sqrt{3 - y} \] **Right Side:** The integral on the right side is: \[ \int x e^{-x^{2}} \, dx \] Let \( v = -x^{2} \), so \( dv = -2x \, dx \), which implies \( x \, dx = -\frac{1}{2} dv \). The integral becomes: \[ -\frac{1}{2} \int e^{v} \, dv = -\frac{1}{2} e^{v} + C = -\frac{1}{2} e^{-x^{2}} + C \] **Step 3: Combine the Integrals** Equating both integrated sides: \[ -2\sqrt{3 - y} = -\frac{1}{2} e^{-x^{2}} + C \] Multiply through by \(-1\): \[ 2\sqrt{3 - y} = \frac{1}{2} e^{-x^{2}} - C \] To simplify, let’s represent the constant as \( C' \): \[ \sqrt{3 - y} = \frac{1}{4} e^{-x^{2}} + C' \] Alternatively, multiplying both sides by 4 gives: \[ 4\sqrt{3 - y} = e^{-x^{2}} + C \] This matches **Option C** in the provided choices. **Answer:** **C. \( 4 \sqrt{3-y}=e^{-x^{2}}+C \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the given differential equation, we can rearrange it as follows: \[ \frac{dy}{\sqrt{3 - y}} = x e^{-x^2} dx \] Now, integrating both sides: The left-hand side becomes: \[ \int \frac{dy}{\sqrt{3 - y}} = -2\sqrt{3 - y} \] The right-hand side requires integration by parts or using substitution (the integral of \(xe^{-x^2}\) is \(-\frac{1}{2} e^{-x^2}\)): \[ \int x e^{-x^2} dx = -\frac{1}{2} e^{-x^2} + C \] Putting it all together, we derive the relationship: \[ -2\sqrt{3 - y} = -\frac{1}{2} e^{-x^2} + C \] To put in simpler form, we can multiply through by -1 and rearrange: \[ 2\sqrt{3 - y} = \frac{1}{2} e^{-x^2} - C \] Looking for a match among the answer options, we have: \[ 4\sqrt{3 - y} = e^{-x^2} + C' \quad (\text{where } C' = -4C \text{ is a constant}) \] Thus, the correct answer is: C. \( 4 \sqrt{3-y}=e^{-x^{2}}+C \) --- Here's a bit more about differential equations in a fun way: These equations are like puzzles that can help us model real-world phenomena! Each piece of the puzzle (or equation) gives us a little clue about how one variable changes with respect to another. Think about how we can use them to understand everything from population growth to the motion of planets—fascinating, right? Additionally, while solving these equations, remember to watch out for algebraic slips! The most common mistake is dropping negative signs or forgetting to properly integrate both sides. Always double-check your integration to make sure you're not steering off course!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad