Simplify. Assume \( x \) is greater than or equal to zero. \( \sqrt{20 x^{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify \( \sqrt{20 x^{3}} \), we start by breaking it down. We can write \( 20 \) as \( 4 \times 5 \), so: \[ \sqrt{20 x^{3}} = \sqrt{4 \times 5 \times x^{3}} \] Next, we can separate the square root of each term: \[ \sqrt{20 x^{3}} = \sqrt{4} \times \sqrt{5} \times \sqrt{x^{3}} \] Now, we know that \( \sqrt{4} = 2 \) and \( \sqrt{x^{3}} = \sqrt{x^{2} \cdot x} = x \sqrt{x} \). Therefore, we can rewrite the expression as: \[ \sqrt{20 x^{3}} = 2 \times \sqrt{5} \times x \sqrt{x} = 2x \sqrt{5x} \] So, the simplified form of \( \sqrt{20 x^{3}} \) is: \[ 2x \sqrt{5x} \]