Pregunta
upstudy study bank question image url

B) Check whether \( (6,9) \) is a solution of the systems of linear equations. \begin{tabular}{ll} 5) \( s+7 t=69 \) & 6) \( \begin{array}{l}-2 p+5 q=34 \\ -7 q=-61-8 p \\ 6 t+4 s=73\end{array} \) \\ \hline\end{tabular}

Ask by Sherman French. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The point \( (6, 9) \) is **not** a solution to either system of equations. **System 5:** - Substituting \( t = 6 \) and \( s = 9 \) into \( s + 7t = 69 \) gives \( 9 + 42 = 51 \), which does not equal 69. **System 6:** - Substituting \( p = 6 \), \( q = 9 \), \( t = 6 \), and \( s = 9 \) into each equation: - First equation: \( -2(6) + 5(9) = -12 + 45 = 33 \neq 34 \) - Second equation: \( -7(9) = -63 \) and \( -61 - 8(6) = -109 \), so \( -63 \neq -109 \) - Third equation: \( 6(6) + 4(9) = 36 + 36 = 72 \neq 73 \) Therefore, \( (6, 9) \) does not satisfy any of the equations in either system.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To check whether \( (6,9) \) is a solution for the equations, we need to substitute \( s = 6 \) and \( t = 9 \) into the first equation and \( p \) and \( q \) into the second system. 1. For the first equation \( s + 7t = 69 \): \[ 6 + 7(9) = 6 + 63 = 69 \] This is true! 2. For the second system of equations, we need to find \( p \) and \( q \) such that \( (p, q) \) satisfies: - \( -2p + 5q = 34 \) - \( -7q = -61 - 8p \) - \( 6t + 4s = 73 \) Substituting \( s = 6 \) and \( t = 9 \) into the third equation: \[ 6(9) + 4(6) = 54 + 24 = 78 \] Since \( 78 \neq 73 \), \( (6, 9) \) is not a solution to the system of equations. Thus, the answer is confirmed: \( (6, 9) \) is a solution for the first equation, but not for the second system.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad