Pregunta
upstudy study bank question image url

Esercizio 13.16 Costruire, se possibile, un'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \) abbia come nucleo il sottospazio \( U=\mathcal{L}((1,1,0),(-1,1,1)) \). È unica tale applicazionet Svolgimento Deve essere \[ F(1,1,0)=F(-1,1,1)=(0,0,0,0) \] Poiché manca un vettore, per completare ad una base dello spazio di partenza, le applicazioni lineari possibili sono infinite. Si badi a non far sì che anche il terros vettore della base di partenza vada a finire nel vettore nullo, altrimenti si ottiene l'applicazione nulla che ha nucleo di dimensione tre. Lavorando un po' con l'occhio allenato si trova ad esempio \[ F(x, y, z)=(x-y+2 z, 0,0,0) \]

Ask by Blake Logan. in Italy
Dec 29,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Per costruire un'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \) con nucleo \( U = \mathcal{L}((1,1,0),(-1,1,1)) \), si può definire \( F \) come: \[ F(x, y, z) = (x - y + 2z, 0, 0, 0) \] Questa applicazione mappa i vettori nel nucleo al vettore nullo e ha un'immagine di dimensione 1 in \( \mathbb{R}^{4} \). Ci sono infinite applicazioni lineari che soddisfano queste condizioni.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

Quando si tratta di spazi vettoriali e applicazioni lineari, la dimensione del nucleo è fondamentale. Il nucleo di un'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \) ha dimensione 2, visto che il sottospazio \( U \) è generato da due vettori. Di conseguenza, l'immagine dell'applicazione linear è di dimensione 1, il che implica che esiste un solo vettore indipendente nell'immagine, aumentando la flessibilità delle funzioni \( F \). Un errore comune è pensare che l'applicazione debba essere unica. In realtà, poiché abbiamo una libertà nella scelta di un vettore nell'immagine, possiamo trovare infinite applicazioni lineari con la stessa struttura del nucleo. Assicurati di mantenere il terzo vettore della base di \(\mathbb{R}^{3}\) che non mappa a zero, per così garantire che \( F \) non sia l'applicazione nulla!

preguntas relacionadas

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Otro France Jan 22, 2025

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad