Pregunta
Simplify. Assume \( q \) is greater than or equal to zero. \( \sqrt{12 q^{10}} \)
Ask by Mcdonald Fernandez. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 2 q^{5} \sqrt{3} \)
Solución
To simplify \( \sqrt{12 q^{10}} \) with the assumption that \( q \geq 0 \), follow these steps:
1. **Factor the expression inside the square root:**
\[
\sqrt{12 q^{10}} = \sqrt{4 \times 3 \times q^{10}}
\]
2. **Simplify the square roots of the perfect squares:**
- \( \sqrt{4} = 2 \)
- \( \sqrt{q^{10}} = q^{10/2} = q^5 \) (since \( q \geq 0 \), we don't need to consider the negative root)
3. **Combine the simplified parts:**
\[
\sqrt{12 q^{10}} = 2 \times q^5 \times \sqrt{3} = 2 q^5 \sqrt{3}
\]
**Final Answer:**
\[
2 q^{5} \sqrt{3}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify \( \sqrt{12 q^{10}} \), start by breaking it down into its components. The number 12 can be expressed as \( 4 \times 3 \), and \( q^{10} \) can be rooted easily. \[ \sqrt{12 q^{10}} = \sqrt{4 \times 3 \times q^{10}} = \sqrt{4} \times \sqrt{3} \times \sqrt{q^{10}} \] Now calculate each square root: \[ \sqrt{4} = 2 \] \[ \sqrt{q^{10}} = q^{10/2} = q^5 \] Putting it all together, we have: \[ \sqrt{12 q^{10}} = 2 \times \sqrt{3} \times q^5 = 2q^5\sqrt{3} \] So, the simplified expression is: \[ 2q^5\sqrt{3} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium