nber of terms, if possible. (b) \( \left(\frac{2}{3} y+\frac{5}{8} x+\frac{1}{4}\right)+\left(\frac{1}{4} x+\frac{1}{2}\right) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To combine the expressions, first, identify and sum the like terms. Starting with \( \left(\frac{2}{3} y + \frac{5}{8} x + \frac{1}{4}\right) + \left(\frac{1}{4} x + \frac{1}{2}\right) \), we rearrange and combine the \( x \), \( y \), and constant terms: 1. \( x \) terms: \( \frac{5}{8} x + \frac{1}{4} x = \frac{5}{8} x + \frac{2}{8} x = \frac{7}{8} x \) 2. \( y \) term: \( \frac{2}{3} y \) (no like term to combine) 3. Constant terms: \( \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \) Putting it together, we get: \[ \frac{2}{3} y + \frac{7}{8} x + \frac{3}{4} \] In total, there are three distinct terms: one term involving \( y \), one term involving \( x \), and one constant term.