Find the volume of the solid formed by rotating the area under the curve \( y = \frac{1}{x} \) from \( x = 1 \) to \( x = 3 \) about the y-axis.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the volume of the solid formed by rotating the area under the curve \( y = \frac{1}{x} \) from \( x = 1 \) to \( x = 3 \) about the y-axis, we can use the method of cylindrical shells. The formula for the volume \( V \) is given by: \[ V = 2\pi \int_{a}^{b} x f(x) \, dx \] In this case, \( f(x) = \frac{1}{x} \), and the limits of integration \( a \) and \( b \) are 1 and 3, respectively. So we have: \[ V = 2\pi \int_{1}^{3} x \cdot \frac{1}{x} \, dx = 2\pi \int_{1}^{3} 1 \, dx \] Calculating the integral: \[ V = 2\pi \left[ x \right]_{1}^{3} = 2\pi \left( 3 - 1 \right) = 2\pi \cdot 2 = 4\pi \] Therefore, the volume of the solid formed by rotating the area under the curve about the y-axis is: \[ \boxed{4\pi} \]