Pregunta
Determine the convergence or divergence of the sequence with the given \( n \)th term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) \[ a_{n}=\frac{6}{n+9} \]
Ask by Stephens Garrett. in the United States
Dec 18,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The sequence converges and its limit is 0.
Solución
To determine whether the sequence \( a_n = \frac{6}{n+9} \) converges or diverges, and to find its limit if it converges, we analyze its behavior as \( n \) approaches infinity.
1. **Examine the Denominator:**
- As \( n \) increases, \( n + 9 \) also increases without bound. Mathematically, \(\lim_{n \to \infty} (n + 9) = \infty\).
2. **Evaluate the Sequence:**
- Since the denominator grows without bound, the overall fraction \( \frac{6}{n+9} \) becomes smaller and smaller.
- Mathematically, \(\lim_{n \to \infty} \frac{6}{n+9} = 0\).
3. **Conclusion:**
- The sequence converges because it approaches a specific finite limit.
- The limit of the sequence is **0**.
**Answer:**
The sequence converges and its limit is 0
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To determine the convergence of the sequence \( a_{n}=\frac{6}{n+9} \), we need to analyze what happens to \( a_{n} \) as \( n \) approaches infinity. As \( n \) increases, the denominator \( n + 9 \) grows larger and larger. Consequently, the fraction as a whole approaches zero. Therefore, the limit of the sequence is: \[ \lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{6}{n+9} = 0. \] Thus, the sequence converges, and its limit is \( 0 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium