Pregunta
upstudy study bank question image url

For a project in her Geometry class, Sadie uses a mirror on the ground to measure the height of her school's football goalpost. She walks a distance of 6.45 meters from the goalpost, then places a mirror flat on the ground, marked with an X at the center. She then walks 4.65 more meters past the mirror, so that when she turns around and looks down at the mirror, she can see the top of the goalpost clearly inarked in the X. Her partner measures the distance from her eyes to the ground to be 1.55 meters. How tall is the goalpost? Round your answer to the nearest hundredth of a meter.

Ask by Klein Mathis. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The goalpost is 2.15 meters tall.

Solución

To determine the height of the goalpost using Sadie's mirror experiment, we can employ the concept of similar triangles. ### Step-by-Step Solution: 1. **Understand the Setup:** - **Distance from goalpost to mirror:** 6.45 meters - **Distance from mirror to Sadie:** 4.65 meters - **Height from Sadie's eyes to the ground:** 1.55 meters - **Height of the goalpost:** \( h \) meters (what we need to find) 2. **Use Similar Triangles:** - The triangles formed by the goalpost and Sadie are similar because the angle of incidence equals the angle of reflection. - This gives us the proportion: \[ \frac{h}{6.45} = \frac{1.55}{4.65} \] 3. **Solve for \( h \):** \[ h = 6.45 \times \left( \frac{1.55}{4.65} \right) \] \[ h = 6.45 \times \frac{31}{93} = 6.45 \times \frac{1}{3} = 2.15 \text{ meters} \] ### Final Answer: The height of the goalpost is **2.15 meters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the height of the goalpost, we can use similar triangles. Sadie's total distance from the goalpost to her eyes when looking into the mirror is the sum of the distance from the goalpost to the mirror (6.45 meters) and the distance she walked past the mirror (4.65 meters), which totals 11.10 meters. The ratio of Sadie's eye level (1.55 meters) to the height of the goalpost (h) corresponds to the ratio of her distance from the goalpost (11.10 m) to her distance from the mirror (6.45 m). Setting up the proportion: 1.55 / h = 6.45 / 11.10 Cross-multiplying gives: 1.55 * 11.10 = h * 6.45 Now, solving for h: h = (1.55 * 11.10) / 6.45 ≈ 2.65 meters. So, rounding to the nearest hundredth, the height of the goalpost is approximately **2.65 meters**. --- Understanding how the concept of similar triangles works can help in grasping various topics in Geometry. By realizing that angles formed by lines to the top of the goalpost create similar triangles, you can solve a multitude of real-life problems using geometric principles! This technique is not just limited to goalposts or mirrors. You can apply the same method in various situations, such as measuring the height of a tree or a building, where direct measurement is impractical. All you need are your measuring tools and a reflective surface!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad