Pregunta
upstudy study bank question image url

Triangle \( X Y Z \) is isosceles. The measure of the vertex angle, \( Y \), is twice the measure of a base angle. What is true about triangle \( X Y Z \) ? Select three options. Angle \( Y \) is a right angle. The measure of angle \( Z \) is \( 45^{\circ} \). The measure of angle \( X \) is \( 36^{\circ} \). The measure of the vertex angle is \( 72^{\circ} \). The perpendicular bisector of \( \overline{x Z} \) creates two smaller isosceles triangles.

Ask by Elliott Luna. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Triangle \( XYZ \) has a right angle at \( Y \), angle \( Z \) is \( 45^{\circ} \), and the perpendicular bisector of \( \overline{x Z} \) creates two smaller isosceles triangles.

Solución

To solve the problem, we need to analyze the properties of triangle \( XYZ \) based on the given conditions. 1. **Understanding the triangle**: Triangle \( XYZ \) is isosceles, which means two of its angles are equal. Let's denote the base angles as \( A \) (for angle \( X \)) and \( A \) (for angle \( Z \)), and the vertex angle \( Y \) as \( B \). 2. **Given condition**: The measure of the vertex angle \( Y \) is twice the measure of a base angle. Therefore, we can express this relationship mathematically: \[ B = 2A \] 3. **Sum of angles in a triangle**: The sum of the angles in any triangle is \( 180^{\circ} \): \[ A + A + B = 180^{\circ} \] Simplifying this gives: \[ 2A + B = 180^{\circ} \] 4. **Substituting the expression for \( B \)**: \[ 2A + 2A = 180^{\circ} \] \[ 4A = 180^{\circ} \] \[ A = 45^{\circ} \] 5. **Finding \( B \)**: \[ B = 2A = 2 \times 45^{\circ} = 90^{\circ} \] Now we have determined the measures of the angles: - \( A = 45^{\circ} \) (angles \( X \) and \( Z \)) - \( B = 90^{\circ} \) (angle \( Y \)) ### Conclusion: Now we can evaluate the options provided: 1. **Angle \( Y \) is a right angle.** - **True** (since \( Y = 90^{\circ} \)) 2. **The measure of angle \( Z \) is \( 45^{\circ} \).** - **True** (since \( Z = A = 45^{\circ} \)) 3. **The measure of angle \( X \) is \( 36^{\circ} \).** - **False** (since \( X = A = 45^{\circ} \)) 4. **The measure of the vertex angle is \( 72^{\circ} \).** - **False** (since \( Y = 90^{\circ} \)) 5. **The perpendicular bisector of \( \overline{x Z} \) creates two smaller isosceles triangles.** - **True** (since the perpendicular bisector of the base of an isosceles triangle creates two smaller isosceles triangles). ### Final Selection: The three true statements about triangle \( XYZ \) are: 1. Angle \( Y \) is a right angle. 2. The measure of angle \( Z \) is \( 45^{\circ} \). 3. The perpendicular bisector of \( \overline{x Z} \) creates two smaller isosceles triangles.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In triangle \( X Y Z \), let the measure of each base angle be denoted as \( x \). Since \( Y \) is the vertex angle and is twice the measure of a base angle, we can express angle \( Y \) as \( 2x \). By the triangle angle sum property, we have: \[ x + x + 2x = 180^\circ \\ \Rightarrow 4x = 180^\circ \\ \Rightarrow x = 45^\circ \] Thus, angle \( Y \) is: \[ 2x = 2 \cdot 45^\circ = 90^\circ \] So, angle \( Y \) is a right angle, and angles \( X \) and \( Z \) both measure \( 45^\circ \). Hence, the statements "Angle \( Y \) is a right angle" and "The measure of angle \( Z \) is \( 45^{\circ} \)" are true. The perpendicular bisector of \( \overline{x Z} \) indeed divides the triangle into two smaller isosceles triangles, confirming all three selected options are correct. For further exploration, did you know this triangle is often referred to as a right isosceles triangle? It shows up everywhere, from architectural designs to the classic 45-45-90 triangle in geometry! If you want to dive deeper into the properties of triangles, consider examining the Pythagorean theorem or investigating how similar triangles can help in finding unknown angle measures!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad