Pregunta
Ready In the following exercise, you will be given the opportunity to recall what happens when you add two linear functions. Given: \( f(x)=2 x+3, g(x)=x+2 \) \( h(x)=x-5, m(x)=-3 x-1 \)
Ask by Powell Rowe. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
When you add two linear functions, you add their slopes and y-intercepts. For example, adding \( f(x) = 2x + 3 \) and \( g(x) = x + 2 \) gives \( 3x + 5 \). Similarly, adding \( h(x) = x - 5 \) and \( m(x) = -3x - 1 \) results in \( -2x - 6 \).
Solución
Sure! Let's explore what happens when you add two linear functions using the given functions:
- \( f(x) = 2x + 3 \)
- \( g(x) = x + 2 \)
- \( h(x) = x - 5 \)
- \( m(x) = -3x - 1 \)
**Understanding Linear Functions:**
A linear function is of the form \( y = mx + b \), where:
- \( m \) is the **slope** (rate of change).
- \( b \) is the **y-intercept** (the value of \( y \) when \( x = 0 \)).
**Adding Two Linear Functions:**
When you add two linear functions, you add their corresponding coefficients (slopes) and their constant terms (y-intercepts). The result is also a linear function.
**Step-by-Step Addition:**
1. **Adding \( f(x) \) and \( g(x) \):**
\[
f(x) + g(x) = (2x + 3) + (x + 2)
\]
- **Combine like terms:**
- \( 2x + x = 3x \)
- \( 3 + 2 = 5 \)
\[
f(x) + g(x) = 3x + 5
\]
2. **Adding \( h(x) \) and \( m(x) \):**
\[
h(x) + m(x) = (x - 5) + (-3x - 1)
\]
- **Combine like terms:**
- \( x - 3x = -2x \)
- \( -5 - 1 = -6 \)
\[
h(x) + m(x) = -2x - 6
\]
**Summary of Results:**
- \( f(x) + g(x) = 3x + 5 \)
- \( h(x) + m(x) = -2x - 6 \)
**Key Points:**
- **Slope Addition:** When adding two linear functions, their slopes add up. For example, \( 2x \) (from \( f(x) \)) and \( x \) (from \( g(x) \)) combine to give a slope of \( 3x \).
- **Y-Intercept Addition:** The constant terms add up separately. Here, \( 3 \) (from \( f(x) \)) and \( 2 \) (from \( g(x) \)) combine to give a constant term of \( 5 \).
- **Resulting Function:** The sum of two linear functions is another linear function.
**Visualization:**
1. **Graphing \( f(x) + g(x) = 3x + 5 \):**
- **Slope:** 3 (steeper than \( f(x) \) and \( g(x) \))
- **Y-Intercept:** 5
2. **Graphing \( h(x) + m(x) = -2x - 6 \):**
- **Slope:** -2 (slopes downward)
- **Y-Intercept:** -6
**Practice Problem:**
Try adding the following pairs of linear functions on your own:
- **Pair 1:**
- \( f(x) = 4x + 1 \)
- \( g(x) = -x + 3 \)
- **Pair 2:**
- \( h(x) = 5x - 2 \)
- \( m(x) = 2x + 4 \)
**Solution:**
1. **Pair 1:**
\[
f(x) + g(x) = (4x + 1) + (-x + 3) = (4x - x) + (1 + 3) = 3x + 4
\]
2. **Pair 2:**
\[
h(x) + m(x) = (5x - 2) + (2x + 4) = (5x + 2x) + (-2 + 4) = 7x + 2
\]
Feel free to ask if you have any more questions or need further explanations!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
When you add two linear functions, you're essentially combining their respective slopes and y-intercepts. So, if we take your given functions \( f(x) = 2x + 3 \) and \( g(x) = x + 2 \), adding them together gives us \( f(x) + g(x) = (2x + 3) + (x + 2) = 3x + 5 \). Now, if you do the same with \( h(x) = x - 5 \) and \( m(x) = -3x - 1 \), you'll get \( h(x) + m(x) = (x - 5) + (-3x - 1) = -2x - 6 \). It's like creating a new friend by merging the styles of two unique personalities!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium