Day-8 Each One Teach One (8) Find the value of \( \log _{10} 0.0001 \) (9) Sol: Let \( \log _{10} 0.0001=x \) 10 Remove log \[ \begin{array}{l} \text { 0. } 0001=10^{x} \\ \Rightarrow \frac{1}{10,000}=10 \frac{1}{104} \\ \Rightarrow \frac{1}{104}=10^{x} \\ \Rightarrow 10^{-4}=10^{x} \\ \Rightarrow 10^{x}=10^{-4} \end{array} \] ( .. If Bases are equal, then Exponents are also equal.) \[ \therefore \log _{10} 0.0001=-4 \] (1) Find the value \( 3^{3}+\log { }^{3} \). (2) Find the value \( \sqrt{x} \log \frac{\sqrt{x}}{\sqrt{x}} \). (3) Find the value \( \log \sqrt{ } x \). 1 (4) Show that \( \log \frac{162}{343}+2 \log \frac{7}{9}-\log \frac{1}{7}=\log 2 \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
From a historical perspective, the concept of logarithms first emerged in the early 17th century when Scottish mathematician John Napier published his work on logarithms in 1614. This innovative idea simplified complex calculations, particularly in astronomy, navigation, and later on in finance, allowing users to transform multiplicative processes into additive ones using logarithmic scales. In practical scenarios, logarithms are extensively used in various fields like science, engineering, and economics. For example, in the field of acoustics, sound intensity is measured in decibels, which is a logarithmic scale. When analyzing earthquakes, the magnitude is expressed using the Richter scale, another logarithmic representation, which helps convey the vast differences in energy release during quakes in a more manageable way.