This question has two parts. First, answer Part A. Then, answer Part B. Part A A triangle has sides with lengths 8,15 , and 17 . Which of the following verifies this is a Pythagorean triple? O A) \( 8^{2}+15^{2}=17^{2} \) B) \( 8^{2}+17^{2}=15^{2} \) C) \( 15^{2}+17^{2}=8^{2} \) Part B Approximate these side lengths do not form a Pythagorean triple. ascending order. D angles in this triangle to the nearest degree and list in Degrees and
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To verify if the sides 8, 15, and 17 form a Pythagorean triple, we check option A: \( 8^{2}+15^{2}=17^{2} \). When we calculate this, \( 64 + 225 = 289 \), which equals \( 17^{2} \). Therefore, this confirms that 8, 15, and 17 do indeed form a Pythagorean triple! Now, for the angles of our triangle, we can use the cosine rule. To find angle A opposite side 8, we apply: \[ A = \cos^{-1} \left( \frac{b^2 + c^2 - a^2}{2bc} \right) \] By calculating, we find that the angles approximate to about 28°, 62°, and 90°, as the side opposite the longest length (17) will be the right angle. So, in ascending order, the angles are approximately 28°, 62°, and 90°.