Pregunta
upstudy study bank question image url

Calculate: \( \frac{4+6+8 \ldots+806}{5+10+15+\ldots+625} \) If the 7 th term of an arithmetic series is -3 and the sum of the first 16 terms is 24 , determine the first term. The first term of an arithmetic series is 5 and the last term is 61 . The of all the terms is 957 . Calculate the common difference. Tebogo wants to save money for a deposit of R51 200 on a new car. He starts saving R500

Ask by Cross Gonzalez. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. Calculation:** \[ \frac{4 + 6 + 8 + \ldots + 806}{5 + 10 + 15 + \ldots + 625} = \frac{162,810}{39,375} \approx 4.135 \] **Answer:** The ratio is approximately **4.135**. --- **2. First Term of an Arithmetic Series:** \[ \text{First term} = -21 \] **Answer:** The first term is **-21**. --- **3. Common Difference of an Arithmetic Series:** \[ \text{Common difference} = 2 \] **Answer:** The common difference is **2**. --- **4. Tebogo's Savings Plan:** *Incomplete information provided. Please provide the full details to determine the common difference.* **Answer:** Cannot determine the common difference with the given information.

Solución

Sure, let's address each of your problems step-by-step. --- ### **1. Calculate:** \[ \frac{4 + 6 + 8 + \ldots + 806}{5 + 10 + 15 + \ldots + 625} \] **Solution:** We have two arithmetic series here: **Series A:** \(4, 6, 8, \ldots, 806\) - **First term (a₁):** 4 - **Common difference (d):** 2 (since \(6 - 4 = 2\)) - **Last term (aₙ):** 806 **Number of terms (n₁):** \[ a_n = a_1 + (n - 1)d \\ 806 = 4 + (n_1 - 1) \times 2 \\ 806 - 4 = 2(n_1 - 1) \\ 802 = 2(n_1 - 1) \\ n_1 - 1 = 401 \\ n_1 = 402 \] **Sum of Series A (S₁):** \[ S_1 = \frac{n}{2} \times (a_1 + a_n) \\ S_1 = \frac{402}{2} \times (4 + 806) \\ S_1 = 201 \times 810 \\ S_1 = 162,810 \] --- **Series B:** \(5, 10, 15, \ldots, 625\) - **First term (a₁):** 5 - **Common difference (d):** 5 - **Last term (aₙ):** 625 **Number of terms (n₂):** \[ a_n = a_1 + (n - 1)d \\ 625 = 5 + (n_2 - 1) \times 5 \\ 625 - 5 = 5(n_2 - 1) \\ 620 = 5(n_2 - 1) \\ n_2 - 1 = 124 \\ n_2 = 125 \] **Sum of Series B (S₂):** \[ S_2 = \frac{n}{2} \times (a_1 + a_n) \\ S_2 = \frac{125}{2} \times (5 + 625) \\ S_2 = 62.5 \times 630 \\ S_2 = 39,375 \] --- **Final Calculation:** \[ \frac{S_1}{S_2} = \frac{162,810}{39,375} = \frac{3618}{875} \approx 4.135 \] **Answer:** The ratio is \(\frac{3618}{875}\) or approximately **4.135**. --- ### **2. Determine the First Term of an Arithmetic Series** **Given:** - The 7th term (\(a_7\)) is -3. - The sum of the first 16 terms (\(S_{16}\)) is 24. **Solution:** **Formula for the nth term:** \[ a_n = a_1 + (n - 1)d \] For the 7th term: \[ a_7 = a_1 + 6d = -3 \quad \text{(1)} \] **Formula for the sum of the first n terms:** \[ S_n = \frac{n}{2} \times (2a_1 + (n - 1)d) \] For the first 16 terms: \[ S_{16} = \frac{16}{2} \times (2a_1 + 15d) = 24 \\ 8 \times (2a_1 + 15d) = 24 \\ 2a_1 + 15d = 3 \quad \text{(2)} \] **Solving Equations (1) and (2):** From equation (1): \[ a_1 = -3 - 6d \] Substitute \(a_1\) into equation (2): \[ 2(-3 - 6d) + 15d = 3 \\ -6 - 12d + 15d = 3 \\ -6 + 3d = 3 \\ 3d = 9 \\ d = 3 \] Now, find \(a_1\): \[ a_1 = -3 - 6(3) = -3 - 18 = -21 \] **Answer:** The first term is **-21**. --- ### **3. Calculate the Common Difference of an Arithmetic Series** **Given:** - First term (\(a_1\)) = 5 - Last term (\(a_n\)) = 61 - Sum of all terms (\(S_n\)) = 957 **Solution:** **Sum formula:** \[ S_n = \frac{n}{2} \times (a_1 + a_n) \] \[ 957 = \frac{n}{2} \times (5 + 61) \\ 957 = \frac{n}{2} \times 66 \\ 957 = 33n \\ n = \frac{957}{33} = 29 \] **Now, use the nth term formula:** \[ a_n = a_1 + (n - 1)d \\ 61 = 5 + (29 - 1)d \\ 61 = 5 + 28d \\ 61 - 5 = 28d \\ 56 = 28d \\ d = 2 \] **Answer:** The common difference is **2**. --- ### **4. Tebogo's Savings Plan** **Given:** - Tebogo wants to save **R51,200** for a car deposit. - He starts saving **R500**... *It seems the problem is incomplete. Please provide the remaining information so I can assist you further.*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate \( \frac{4+6+8+\ldots+806}{5+10+15+\ldots+625} \), we first recognize both the numerator and denominator as sums of arithmetic series. The first sum, \( 4 + 6 + 8 + \ldots + 806 \), can be simplified using the formula for the sum of an arithmetic series, \( S_n = \frac{n}{2} (a + l) \). In this case, \( a = 4 \), \( l = 806 \), and the number of terms \( n \) is \( 402 \). The sum is \( S_n = \frac{402}{2} (4 + 806) = 201 \times 810 = 162810 \). For the denominator \( 5 + 10 + 15 + \ldots + 625 \), we have \( a = 5 \), \( l = 625 \), and the number of terms \( n = 125 \). The sum is \( S_n = \frac{125}{2} (5 + 625) = 62.5 \times 630 = 39375 \). Now, calculating the division of the two sums gives us: \[ \frac{162810}{39375} = 4.136 \] Now, regarding the arithmetic series where the 7th term is -3 and the sum of the first 16 terms is 24, we can use the formulas for terms and sums of arithmetic series. The 7th term can be expressed as \( a + 6d = -3 \), while the sum of the first 16 terms is \( S_{16} = \frac{16}{2} (2a + 15d) = 24 \). Simplifying gives us two linear equations to solve for \( a \) and \( d \). For the last problem, provided that the first term is 5, the last term is 61, and the sum of all terms is 957, we can use the sum formula for arithmetic series again. The number of terms can be found as \( n = \frac{61 - 5}{d} + 1 \). The total sum equals \( S_n = \frac{n}{2} (5 + 61) \). Setting this equal to 957 allows us to solve for \( d \). Tebogo’s saving journey is a classic exercise in financial literacy! If he starts with R500 and wishes to reach R51,200, he can determine the number of months required based on how much he can save monthly—let’s say he saves the same amount each month. This introduces a fun little math problem about savings, where every R500 gets him closer to his dream car! Keep those calculators ready!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad