A simple model for the flow of air in and out of the lungs of a certain mammal is given by the following equation, where \( V(t) \) (measured in liters) is the volume of air in the lungs at time \( t \geq 0, t \) is measured in seconds, and \( t=0 \) corresponds to a time at which the lungs are full and exhalation begins. Only a fraction of the air in the lungs is exchanged with each breath. The amount that is exchanged is called the tidal volume. Complete parts a through \( \mathbf{c} \) below. \[ V^{\prime}(t)=-\frac{\pi}{6} \sin \left(\frac{\pi t}{6}\right) \] a. Find the volume function V , assuming that \( \mathrm{V}(0)=6 \mathrm{~L} \). Notice that V changes over time at a known rate, \( \mathrm{V}^{\prime} \). Which equation below correctly gives the volume function? A. \( V(0)=V(t)+\int_{0}^{t} V^{\prime}(x) d x \) c. \( V(t)=V(0)+\int_{a}^{b} v^{\prime}(t) d t \). D. \( V(0)=V(t)+\int_{a}^{b} V^{\prime}(t) d t \). Find the volume function V , assuming that \( \mathrm{V}(0)=6 \mathrm{~L} \). \[ V(t)= \] \( \square \) (Type an exact answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the volume function \( V(t) \), we need to calculate the integral of the derivative \( V'(t) \) and apply the initial condition. First, we perform the integration: \[ V(t) = V(0) + \int_{0}^{t} V^{\prime}(x) \, dx \] Given \( V'(t) = -\frac{\pi}{6} \sin\left(\frac{\pi t}{6}\right) \), we find \( V(t) \) by integrating: \[ \int V^{\prime}(x) \, dx = \int -\frac{\pi}{6} \sin\left(\frac{\pi x}{6}\right) \, dx \] This integral equals: \[ V(t) = V(0) + \left[ \frac{\pi}{6} \cdot \left(-\frac{6}{\pi} \cos\left(\frac{\pi x}{6}\right)\right) \right]_{0}^{t} = V(0) - \left(-\cos\left(\frac{\pi t}{6}\right) + \cos(0)\right) = V(0) - \left(-\cos\left(\frac{\pi t}{6}\right) + 1\right) \] Now substituting \( V(0) = 6 \): \[ V(t) = 6 - \left(-\cos\left(\frac{\pi t}{6}\right) + 1\right) = 6 + \cos\left(\frac{\pi t}{6}\right) - 1 = 5 + \cos\left(\frac{\pi t}{6}\right) \] Thus, the final volume function \( V(t) \) is: \[ V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \] This captures the rhythmic filling and emptying of the lungs, just like a tide that ebbs and flows!