Pregunta
upstudy study bank question image url

A simple model for the flow of air in and out of the lungs of a certain mammal is given by the following equation, where \( V(t) \) (measured in liters) is the volume of air in the lungs at time \( t \geq 0, t \) is measured in seconds, and \( t=0 \) corresponds to a time at which the lungs are full and exhalation begins. Only a fraction of the air in the lungs is exchanged with each breath. The amount that is exchanged is called the tidal volume. Complete parts a through \( \mathbf{c} \) below. \[ V^{\prime}(t)=-\frac{\pi}{6} \sin \left(\frac{\pi t}{6}\right) \] a. Find the volume function V , assuming that \( \mathrm{V}(0)=6 \mathrm{~L} \). Notice that V changes over time at a known rate, \( \mathrm{V}^{\prime} \). Which equation below correctly gives the volume function? A. \( V(0)=V(t)+\int_{0}^{t} V^{\prime}(x) d x \) c. \( V(t)=V(0)+\int_{a}^{b} v^{\prime}(t) d t \). D. \( V(0)=V(t)+\int_{a}^{b} V^{\prime}(t) d t \). Find the volume function V , assuming that \( \mathrm{V}(0)=6 \mathrm{~L} \). \[ V(t)= \] \( \square \) (Type an exact answer.)

Ask by Hamilton Gray. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume function is \( V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \) liters.

Solución

To find the volume function \( V(t) \) given the initial condition \( V(0) = 6 \) liters and the rate of change \( V'(t) = -\frac{\pi}{6} \sin\left(\frac{\pi t}{6}\right) \), follow these steps: 1. **Integrate the Rate of Change:** \[ V(t) = V(0) + \int_{0}^{t} V'(x) \, dx \] Substituting \( V'(x) \): \[ V(t) = 6 + \int_{0}^{t} \left(-\frac{\pi}{6} \sin\left(\frac{\pi x}{6}\right)\right) dx \] 2. **Compute the Integral:** Let \( u = \frac{\pi x}{6} \), hence \( du = \frac{\pi}{6} dx \) or \( dx = \frac{6}{\pi} du \). \[ \int \left(-\frac{\pi}{6} \sin(u)\right) \cdot \frac{6}{\pi} du = -\int \sin(u) \, du = \cos(u) + C \] Substituting back \( u = \frac{\pi x}{6} \): \[ \cos\left(\frac{\pi t}{6}\right) - \cos(0) = \cos\left(\frac{\pi t}{6}\right) - 1 \] 3. **Combine the Results:** \[ V(t) = 6 + \left(\cos\left(\frac{\pi t}{6}\right) - 1\right) = 5 + \cos\left(\frac{\pi t}{6}\right) \] **Final Volume Function:** \[ V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \] **Answer:** For all \( t \geq 0 \), the volume is \( V(t) = 5 + \cos\left(\dfrac{\pi t}{6}\right) \). \[ V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume function \( V(t) \), we need to calculate the integral of the derivative \( V'(t) \) and apply the initial condition. First, we perform the integration: \[ V(t) = V(0) + \int_{0}^{t} V^{\prime}(x) \, dx \] Given \( V'(t) = -\frac{\pi}{6} \sin\left(\frac{\pi t}{6}\right) \), we find \( V(t) \) by integrating: \[ \int V^{\prime}(x) \, dx = \int -\frac{\pi}{6} \sin\left(\frac{\pi x}{6}\right) \, dx \] This integral equals: \[ V(t) = V(0) + \left[ \frac{\pi}{6} \cdot \left(-\frac{6}{\pi} \cos\left(\frac{\pi x}{6}\right)\right) \right]_{0}^{t} = V(0) - \left(-\cos\left(\frac{\pi t}{6}\right) + \cos(0)\right) = V(0) - \left(-\cos\left(\frac{\pi t}{6}\right) + 1\right) \] Now substituting \( V(0) = 6 \): \[ V(t) = 6 - \left(-\cos\left(\frac{\pi t}{6}\right) + 1\right) = 6 + \cos\left(\frac{\pi t}{6}\right) - 1 = 5 + \cos\left(\frac{\pi t}{6}\right) \] Thus, the final volume function \( V(t) \) is: \[ V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \] This captures the rhythmic filling and emptying of the lungs, just like a tide that ebbs and flows!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad